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Abstract 

In [18,23], we presented a language for the specification of static, dynamic and deontic 
integrity constraints (IC's) for conceptual models (CM's). An important problem not dis- 
cussed in that paper is how IC's are inherited in a taxonomic network of types. For example, 
if students are permitted to perform certain actions under certain preconditions, must we 
repeat these preconditions when specializing this action for the subtype of graduate students, 
or are they inherited, and if so, how? For static constraints, this problem is relatively trivial, 
but for dynamic and deontic constraints, it will turn out that it contains numerous pitfalls, 
caused by the fact that common sense supplies presuppositions about the structure of IC 
inheritance that are not warranted by logic. In this paper, we unravel some of these 
presuppositions and show how to avoid the pitfalls. We first formulate a number of general 
theorems about the inheritance of necessary and/or  sufficient conditions and show that for 
upward inheritance, a closure assumption is needed. We apply this to dynamic and deontic 
IC's, where conditions are preconditions of actions, and show that our common sense is 
sometimes mistaken about the logical implications of what we have specified. We also show 
the connection of necessary and sufficient preconditions of actions with the specification of 
weakest preconditions in programming logic. Finally, we argue that information analysts 
usually assume "constraint completion" in the specification of (we)conditions analogous to 
predicate completion in Prolog and circumscription in non-monotonic logic. The results are 
illustrated with numerous examples and compared with other approaches in the literature. 

1. Introduction 

1.1. THE PROBLEM OF DYNAMIC CONSTRAINT INHERITANCE 

T h e  spec i f i ca t i on  o f  d y n a m i c  c o n s t r a i n t  i n h e r i t a n c e  in  a t a x o n o m y  c o n t a i n s  

s o m e  pi t fa l l s  t h a t  o n e  m u s t  b e  v e r y  c a r e fu l  to  avo id .  F o r  e x a m p l e ,  B o r g i d a  et al. 

[3] give the  f o l l o w i n g  d y n a m i c  c o n s t r a i n t s  (we  s imp l i fy  the  f i rs t  c o n s t r a i n t  a bit) .  

* Now at Tilburg University, Tilburg, The Netherlands. 
** Also, University of Nijmegen, Nijmegen, The Netherlands. 

+ Now at the University of Swaziland. 

�9 J.C. Baltzer A.G. Scientific Publishing Company 



394 R.J. Wieringa et al. / The inheritance of integrity constraints 

1. A student can enroll in a course if the course is not full. 
2. Undergraduate students must in addition have a permission if they want to 

take a graduate course. 
Adding the static constraints 

3. An undergraduate student is a student, 
4. A graduate course is a course 

then from 
John is an undergraduate trying to enroll without permission in a graduate 
course that is not full, 

we can infer the following: 
by 3 and 4 he is a student trying to enroll without permission in a course that is 
not full, 
so by 1 he is permitted to enroll, for students can enroll in a course which is 
not full. 

This is obviously not the intention of the designers, who mean rule 2 to apply 
whenever an undergraduate takes a graduate course. What has gone wrong can be 
explained if we formalize the constraints in dynamic logic. Informally, read [a]q~ 
in the following examples as 

"act ion a necessarily leads to a state where q~ holds." 
Then it is tempting to formalize the constraints as follows. 

Vc, s(Course(c) A ~ f u l l ( c )  A Student(c) ~ [enroll(c, s)]enrolled(c, s))  (1) 

Vc, s ( GradCourse(c) A ~ f u l l ( c )  A Undergrad(s) A permission(c, s) 

[ enroll( c, s )] enrolled ( c, s )) (2) 

Vs(  Undergrad (s ) ~ Student ( s ) ) (3) 

V c ( GradCourse (c) ~ Course (c)).  (4) 

The formalized inference is now: 

Undergrad ( s ) A GradCourse ( c ) A --1 full (c) A --1 permission ( c, s ) b- 

Student(s) A Course(c) A ~ full ( c ) A ~ permission ( c, s)F- 

[ enroll (c, s )] enrolled ( c, s ) A ~ permission ( c, s ). 

The problem with the formalization (1)-(4) is that in (1)-(2), the arrows point 
the wrong way. (1) says that it is a sufficient condition for enrollment that the 
course is not  full. But then (2) cannot be relevant for any enrollment for which 
the sufficient condition in (1) is satisfied. An improved formalization, which 
blocks the fallacious inference above, says that the course not  being full is a 
necessary condition for enrollment of a student, but  it leaves open whether  there 
may  be other necessary conditions as well. So we get 

Vc, s(Course(c) A Student(s)  A [enroll(c, s)]enrolled(c, s) ~ f u l l ( c ) )  (1') 

Vc, s( GradCourse ( c ) A Undergrad ( s ) A [enroll(c, s ) ] enrolled ( c, s)  

permission ( c, s )). (2') 
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(1') says that  a necessary condi t ion for enrol lment  is that  the course be not  full, 
but  leaves open that  there are other conditions.  (2')  gives one of these other 
conditions, for a special case of (1'). In section 5 below we will show that  this 
allows us to infer 
Vc, s( GradCourse( c) /x Undergrad( s ) /x [enroll( c, s )] enrolled( c, s) 

~ full ( c ) A permission(c, s ) ) . (3 ')  
At  least three other problems can be poin ted  out  in this example. First,  (2) is 

really meant  as an exception to the general rule under  (1). This is not  captured  by 
the formalization above, and in general leads to a special (non-monotonic)  logic. 
In section 6.2, we show how exceptions can be specified in a monoton ic  logic. 

Second, one of the reasons that  (1) looks more  natural  than (1') is that  we tend 
to read a temporal order into the implicat ion sign. This is unjustified, for the only 
temporal  ordering in the formulas above is implied by the moda l  operator  [~] for 
an action a. 

Third, a l though we talked informally about  being allowed to enroll in a course, 
we formalized the postcondi t ion enrolled(c, s) explicitly. In database applica- 
tions, we often are only interested in an action being allowed by the rules and 
regulations of the universe of discourse (UoD),  or, weaker, of an action being 
possible in the current  state of the UoD,  independent ly  of specifying what  the 
exact result of the action is. In this paper,  we offer a logic to specify these 
modalities. We do this in a deontic  variant of dynamic  logic in t roduced by Meyer  
[16,17] and applied to conceptual  model  (CM) specification in two earlier papers  
[18,23]. Deontic  logic is a logic of norms and is excellently suited to specifying 
what  is allowed in a UoD.  Dynamic  logic specifies what  can happen  and what  is 
the result of an action, and can be used to specify dynamic  integrity constraints  
(IC's). We first give some necessary background  that  motivates the appl icat ion of 
deontic logic to CM specification. 

1.2. THE UoD, CONCEPTUAL MODELS, AND INTEGRITY CONSTRAINTS 

The CM is an abstraction of a UoD,  and is at the same t ime a mathemat ica l  
structure into which a theory (specification) Spec is interpreted,  as shown in fig. 
1. In  section 2 we define a CM as a Kripke structure consisting of a set of 
possible worlds without  an explicit accessibility relation. A possible world,  also 

Spec CM UoD 

Fig. 1. The double role of a CM. 
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called a state of CM, abstractly represents a possible state of the UoD.  Accessi- 
bility between worlds is not defined explicitly by a binary relation on possible 
worlds, but  by a set of actions, which are functions on the possible worlds of the 
model. Details are given below. Here we want to make two claims about the 
relation between IC's and the UoD. 

1. Explicit knowledge about the UoD is always expressed in closed formulas in 
which the variables range over classes of possible objects in the UoD.  

2. All IC's express explicit knowledge about the UoD. 
This means that IC's are closed sentences in the language of Spec that are true of 
the CM. So they are axioms of Spec, or logical consequences of them. But then 
IC's are necessary truths of the CM, for they are true in all states of CM. This 
means that knowledge about what is usually the case in the U o D  (empirical 
knowledge), or about what ought to be the case in the UoD (deontic, i.e. 
normative knowledge), cannot be added to Spec in the same way as genuine 
necessary truths can. A statement like 

age >1 0 

is an analytic truth, i.e. it follows from the meaning of the symbols occurring in it. 
It is therefore also a necessary truth and can, translated to the appropriate 
language, be adopted in Spec. But assuming we are talking about the age of 
persons, a statement like 

age < 100 

is an empirical truth which may  be violated by the UoD and can therefore not be 
added as a necessary truth to Spec without further qualification. Similarly, 
talking about bank accounts, 

balance >i 0 

is not a necessary truth either but prescribes the way UoD entities should behave. 
What we have now is, on the one hand, a formalism and a semantics which 

allow us to express only necessary truths as IC's, and on the other two types of 
knowledge, empirical and normative, which allow exceptions and cannot be 
expressed in a straightforward way as necessary truths. Our solution to the 
problem for empirical constraints is to simply formulate them so widely that we 
do not, in the useful life of the CM, encounter any exceptions. This in itself is an 
empirical prediction which may  be falsified, but in this paper we ignore problems 
arising from this kind of falsification. For deontic constraints, we retreat to a 
kind of metalevel by stating the fact that there is a norm as a necessary truth 
valid for all states of the CM. We then provide a mechanism by which deviations 
from this norm in a particular world can be detected and, most importantly, 
corrected. 

Returning to fig. 1, Spec is roughly analogous to a database (DB) schema in 
that it specifies all possible states of a CM. The CM as a whole can thus be 
represented in a computer  by storing Spec. We do not assume anything about 
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how a particular state of the CM is represented in the computer.  Traditionally, 
relational DB's store a set of ground atoms; in the presence of Spec, though, these 
allow us to infer many other facts not explicitly stored. Alternatively, we can 
store a set of sentences which has the represented CM state as its preferred 
model. Our goal in this paper is not  to discuss the relative merits of different 
ways to represent CM states, but to discuss the relative merits of certain ways to 
specify, in Spec, necessary truths about all states of the CM. 

1.3. STRUCTURE OF THE PAPER 

In section 2 we give a brief introduction to the language LDeon defined in [23]. 
Section 3 then introduces types, so that in section 4 we can introduce IC's as 
closed sentences in which all variables are quantified over types. We give a 
classification of IC's with respect to whether they specify necessary or sufficient 
conditions for static formulas, or for actions, or for deontic modalities. Section 5 
then contains the main result of the paper, concerning the inheritance of neces- 
sary or sufficient conditions in a taxonomy. Due to the generality of this result, it 
is applicable to a large number  of quite complex constraints. This is illustrated 
with a number of examples. In section 6 we compare this with some non-mono-  
tonic approaches and draw some methodological conclusions from this. In 
particular, we show how constraints can be "completed"  in a way roughly 
analogous to predicate completion in Prolog and to circumscription in AI 
approaches. Section 7 contains a summary of the main conclusions that can be 
drawn from the paper. 

2.  S y n t a x  a n d  s e m a n t i c s  o f  LDeon 

Our specification language consists of three parts, Lstat for static integrity 
constraints, LDy n for dynamic constraints, and LDeon for deontic constraints. We 
devote a brief section to each of these parts. 

2.1. THE STATIC LANGUAGE Lstat 

Lstat is a simple first-order language with the following syntax. 
- Examples of variables are p, b, - - - .  The letters x, y and z (possibly 

indexed) are always used as metavariables over the variables. There are 
infinitely many variables. 

- Constants are A101, 1234 . . . .  and the letter c (possibly indexed) is used as 
metavariable over the constants. There are infinitely many constants. 

- There are finitely many function symbols, with metavariables f ,  g , . . . .  
- There are finitely many predicate symbols, and the letters P,  Q, R are used 

as metavariables over the predicate symbols. Each predicate symbol has an 
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arity > 0. Two special predicates are the unary  predicate E (existence) and 
the binary predicate = (equality). 

Terms and formulas are built  in the usual way using A, V, --1, ~ ,  V, 3, and 
punctua t ion  symbols (,), [ and ]. We use infix nota t ion  for =: Metavariable over 
terms is t and metavariables over formulas are ~ and ~k. The  existence predicate 
E is used by convent ion to single out the set existing objects among the set of 
possible objects. The following abbreviations are used: 

Vex[q~(x)]:=Vx[E(x)=*q~(x)]  and 

3x[E(x) ^ 

In the following definition, we presuppose the usual model  concept  f rom first- 
order predicate logic. 

DEFINITION 2.1 
A function symbol f of arity n > 1 is called t ransparent  with respect to a 

structure M of tstat if for any constants Cl , . . . ,  cn, there is a constant  c o such that  
M ~  f ( c l , . . . ,  cn) = c o . 

If f is t ransparent  then if the arguments  of a particular applicat ion are known 
(in the sense of having a name), then the result of application is known.  In any 
expression, function applications to constants can thus be eliminated. 

DEFINITION 2.2 
For any language L,  
1. the Herbrand universe UL of L is the set of constants  of L. (Since we 

consider only languages with t ransparent  funct ion symbols, it is sufficient to 
consider a Herbrand universe without  funct ion symbols.) 

2. The Herbrand base ~L over the universe U/. of L is the set of all ground 
atoms (closed atomic formulas) of L containing no funct ion symbols. 

3. A Herbrand structure ~r is a subset ~r - ~ z .  Tru th  in ~ z  is defined for 
ground atoms as 

�9 /~r ~ P ( C l , ' " ,  Cn):= P ( c l , ' " ,  Cn) ~'/~L 

and E(c , )  ~ J ~ L ,  i =  1 , ' . ' ,  n. 

For an arbitrary closed q,, t ruth in ~ L  is defined in the usual way (e.g. see 
[13]). 

4. "r is called a transparent Herbrand  structure of L if every funct ion 
symbol of L is t ransparent  with respect to --r 

Note  that  the use of t ransparent  Herbrand  structures is a technical convenience 
that could be eliminated. Without  t ransparent  Herbrand  structures, the construc- 
tion would be more difficult due to the presence of the equality symbol. 
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DEFINITION 2.3 
An $5 Herbrand-Kripke structure ~ ' i ~  of a language L is a collection of 

Herbrand structures which are called the worlds or states of ~ r  L. Truth of a 
ground atom ih ~ L  is defined as 

~ , " L  ~ q~ r w ~ q~ for all w ~ ~ / ' / .  

Truth of a closed formula q~ in a single transparent Herbrand structure w ~ ~ ~//'/~ 
is defined in the usual way. The collection of all Herbrand-Kripke  structures of L 
is called s 

We will drop the qualification "$5"  from the definition from now on. In terms 
of fig. 1, a CM is a Herbrand-Kripke structure and Spec is a theory of the CM. 
Note  that in general, theories have no unique model. We just  assume that there is 
an intended model of Spec. Static integrity constraints are then sentences in Lstat 
that are true in the CM. An example of a static constraint is 

V b ( bird ( b ) ~ warmblooded ( b )) (5) 

2.2. THE DYNAMIC LANGUAGE LDy n 

Lstat is extended to a variant of dynamic logic LDy n. (See [8] for dynamic 
logic.) This is done by adding languages for actions and transactions, which are 
defined first. For  the action language LAc t we assume a fixed set A of atomic 
actions. 

DEFINITION 2.4 
The language Lac t of actions, with typical elements o~, is given by  the following 

BNF:  

a'.:= alal  U a21al &a21~lany Ifail 

where a ~ A. a I tO a 2 is a non-deterministic choice of the actions cq and a2; 
al & a  2 is the parallel execut ion/performance  of the actions a I and a2; ~ is the 
non-performance of the action a; any denotes the unspecified action; fail denotes 
the failing (empty) action. 

The semantics of actions is that they are functions on ~ " / .  A formal 
semantics is given in [17], which is summarized in [23]. Note  that if an action 
changes the world (if it is not the identity function), it does so instantaneously, 
i.e. there are no intermediate worlds during the execution of an action. The 
execution of an action is also called a step. The action fail has no successor 
worlds and the action any executed in a world has an arbitrary world as 
successor, which may be the world in which it is executed. 
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D E F I N I T I O N  2.5 

The language LT"ra,,s of transactions, with typical elements /3, is given by the 
BNF: 

/3::= a I/31 ;/321 clock 

where a ~ LAa. 

Intuitively, /31;/32 is the sequential composi t ion of the transactions/31 and /32" 
In the formal semantics, sequential composi t ion of actions is interpreted as a 
string of atomic actions. 

clock is a transaction of the durat ion of one t ime unit. We assume that a t ime 
unit  has been chosen for the UoD,  giving an intuitive interpretat ion to one tick of 
the clock. If the time unit  is one day, then clock is the passing of one day, if the 
unit  is one minute,  then clock is the passing of one minute.  Dur ing  a tick of the 
clock, any is executed one or more times to match  the durat ion of one t ime unit. 

D E F I N I T I O N  2.6 

The following abbreviations are used: 

/3n : =  /3;  , , ,  ; /3 (n times) 

Ot(n ) : =  d o e k n ;  ot (note: a(0 ~ = a) 

a (~a ) :=a (0 )U . . .  Ua(a ) 
~(n) := eloekn; ~ 

Ot > d : =  a(~<d) = 2(0) • " " " & ~ (d )  

Thus, in a library administrat ion where return is the action of returning a book 
and the time unit  is one calendar week, return~ ~ 3) is the action of returning the 
book at the latest 3 weeks after now ( =  the m o m e n t  that re turn~  3) is executed). 
return(3 ) is the action of not  returning the book  in the third week f rom now, and 
return~ >13) is any transaction not containing the action of re turning the book 
within three weeks. 

D E F I N I T I O N  2.7 

The language LDy n of dynamic  constraints,  with typical elements �9 and ,it,, is 
given by the BNF: 

where q~ is a formula of t s ta t .  We use 

as an abbreviation of ~[fl]--,~. 

The intuitive semantics of [a]~ is that  after the execution of a, ~ necessarily 
holds. [a]~b itself is thus the weakest precondition of  a with respect to the 
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postcondition co. If [a]q~ holds in a world and a is executed in that world, then 
afterwards q~ will hold. 

Just like [.] is a necessity operator, (.) is a possibility operator. Ca)q, says that 
doing a may lead to a state where q~, i.e. there is at least one world in which 
doing a leads to a world where q~. 

An example of a dynamic logic expression is 

Ve(~Employee( e ) ~ [ hire(e)] Employee(e)). (6) 

This says that not  being an employee is a sufficient condition for hire(e) to 
necessarily lead to a state where e is an employee. 

Note that we misuse notation slightly by parametrizing actions with variables 
that also occur in the predicates. We have not provided for this in the syntax or 
semantics of the language. However, this can easily be rectified, see for example 
[7]. 

DEFINITION 2.8 
The following objective modalities are introduced by definition: 

- P O S ( a ) : =  ~[a]faise ( "a  can possibly happen"),  
- NEC(a)  := [~]false ("a  necessarily happens"),  
- D I S ( a ) : =  ~ N E C ( a )  ("a  is discretionary, may  not happen"),  and 
- IMP(a )  .'= -~POS(a) ( "a  can impossibly happen").  

These are called objective modalities to distinguish them from the deontic ones 
which are introduced below. Both are dynamic in that they apply to actions, but  
where objective modalities state concern what objectively can happen, deontic 
ones concern what is admissible. We have 

N E C ( a ) * * - - , P O S ( ~ ) ,  D I S ( a ) ~ P O S ( ~ ) ,  and I M P ( a ) ~ [ a ] f a l s e .  

A simple example is 

Vp, b( Person(p) A Book(b) =~ POS(borrow(p,  b)), (7) 

which can be paraphrased as " I t  is possible for a person to borrow a book" (of 
course, other entities, like institutions, may also be able to borrow books). 

2.3. THE DEONTIC LANGUAGE Lneon 

We need no extensions to  LDy n to be able to express deontic constraints. The 
deontic concepts of obligation and permission can be reduced to the concept of 
prohibition, which in turn can be reduced to the concept of an action leading to a 
violation of a rule. Instead of expressing the rules explicitly, we thus state when 
they are violated. We do this by defining, for each action a, one or more violation 
states F, : a, one for each of the reasons why the execution of a is forbidden. For  
each violation state, we usually define a corrective action which allows one to get 
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out of that state. The necessary reductions are then effected by the following 
definition. 

DEFINITION 2.9 
The following abbreviations are used for deontic modalities: 
- P(a )  .'= - , [ a ] ~ :  a for an i ("a is permitted"),  
- O(a)  := [~]V, : a for an i ("a is obligatory"), 
- D( a) := --,O( a) ("a is discretionary, not obligatory"), and 
- F ( a ) : =  ~P(a) ( "a  is forbidden"). 

Note the analogy with dynamic modalities. The following equivalences are 
analogous to those for objective modalities. 

O ( a )  ~ P ( ~ ) ,  D ( a ) * P ( ~ ) ,  and F ( a )  *~ [a]Vi: a for an i. 

The following interesting implications follow immediately from the definitions: 

P(a) ~ POS(a),  NEC(a) ~ O ( a ) ,  IMP(a) ~ F(a), and D(a) ~ DIS(a).  

The first of these says that what is permitted, is possible. This is a lot weaker than 
the Kantian doctrine "Ought  implies can." 1) The sentence O ( a ) ~  P O S ( a )  is 
not provable in LDeon. Neither is, incidentally, O ( a ( x ) ~  P ( a ( x ) )  provable in 

LDeon. 
An example of a deontic constraint is 

Vp, b(Person(p) A Book(b)= [borrow(p, b)]O(return(p, b)(~30))) (8) 

The meaning of this is that if a person borrows a book, then (afterwards) he must 
return it at most 30 days later. Note that it is not guaranteed that he returns it. 
Contrast this with 

Vp, b(Person(p) A Book(b)=~ [borrow(p, b)]NEC(return(p, b)(~30))), (9) 

which can be paraphrased as " i f  a person borrows a book, then afterwards he 
necessarily returns it". As a statement about the UoD,  this is patently false, and 
as an IC for the DB, failure t~ re tu rn  a book within 30 days would cause the DB 
to be in an inconsistent stateS. The DB would still be consistent, though, when (8) 
were used instead of (9y. Moreover, we can specify what should happen when a 
person does not return a book: 

Vp, b(V: return(p, b) =~ O(pay(p, $2, b))) .  (10) 

When the book is finally returned, the violation is undone, 

V p , b [ return ( p, b )] ~ V: return ( p, b ) (11) 
but the fine must still be paid. 

1) Cf. S. KSrner, Kant (Penguin, 1955), "What ought to be must be possible, since every moral 
obligation implies the (moral or nournenal) freedom to realize it." (p. 167.) The Kantian doctrine 
is a rationalization of one of the central tenets of Lutheranism. The converse is the Modern 
Engineer's doctrine "Can implies ought", or, freely translated, "If you can do something, you 
must try it out." 
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3. Natural kinds and roles 

If knowledge is expressed as closed statements about  objects of a certain type, 
as pointed out in section 1.2, then we must  be able to talk about  types. In this 
section we add the concept of a type to LDeo,. We follow Sowa [22] in using an 
explicit type predicate to declare the type of a term. 

DEFINITION 3.1 
Let T be  a finite set of constants not occurring in LDeon. The elements of T are 

called type names and ~- is used as metavariable over T. ZDeon is extended to the 
typed language TLoeon as follows. 

1. TLDeon contains a special binary predicate type and the set T of type names. 
The only well-formed atomic formulas that can be  built  with type are of the 
form type(t, "r) for a term t and a type name "r, and the only place where "r 
can occur is as the second argument of type. type(x, "r) is called a 
declaration of x. 

2. We introduce the abbreviations 

Vx: "r(ep(x)):=Vx(type(x,  ~ - ) ~ ( x ) )  and 

3x:  ~-(q~(x)).'= 3x( type(x ,  ~') A q~(x)). 

3. The language TLDeo~ is the set of all closed statements that can be  built this 

way and which have all their variables typed. The inference relation F- is 
defined as usual for first-order logic. We only consider formulas in prenex 
normal form, i.e. QIX1 . . .  QnXn(~(Xl, . . . ,  Xn)), where xl,- �9 -, xn are all the 
free variables in q~ and Q, are quantifiers. Because all variables are typed, 
we can write this as 

Qlxl: ~ . . .  Q,x,:  %(eo ' (xD. . . , x , ) ) ,  

with ~ ~ T. 

So far, we have defined a syntax of a first-order language containing some 
special predicates like type and E, and a distinguished set T of constants. We 
must now give a semantics to the type names. We have a choice of keeping the 
extension of a type name constant in each world, or varying it. This choice has an 
intuitive meaning, for compare the types Person and Employee. Some objects can 
become employees or cease to be employees without  coming into existence or 
ceasing to be. There is life before being hired by  a company,  as well as after 
terminating a contract. On the other hand, there is no kind of object  that can 
become a person without coming into existence, or that can cease to be  a person 
without ceasing to exist. Apparently, being a person is an essential proper ty  of 
objects in the way that being an employee isn't. We will call types like Person 
natural kinds and types like Employee roles. With this, we have sufficient 
motivation for the following definition. 
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DEFINITION 3.2 
1. We assume that T is partit ioned into the sets X and ~ .  The constants in J'U 

will be called natural kind names and those in ~ natural role names. 
Metavariable over ~ is k and over ~ is r. "r is still our general metavaria- 
bie over ~ ~ .  

2. A typed structure ~t/'rLD~o, of TLo~o, consists of a structure ~"LOeo. of 
the untyped version LDeon of TLDeon , and assignments 

..U~ (ga(ULD.o.) for each world W ~ " L o e o  ., and II. II w: 

II. II w: ~ (~(ULoeo, n II E II w) for  e a c h  w o r l d  w ~ ~ D e o . ,  

where UL,,.o. is the universe of ~/'Loeo., and we must have: 
- for each r ~  there are worlds w, W ' ~ r L O e o .  with w 4 : w '  and 

I l r l lw4 :  II r II w', 
- for each k ~ ~ and all w, w' ~ ~ ~'rLoeo. with w 4= w',  we have II k II w = 

II k II w,, a n d  
- ULo ,oo=U~r l IT I I .  
The elements of II r II are called the possible instances of ~'. 

3. Truth for formulas type (c, ~') in w ~ / ' r L o . o .  is defined by  

w ~ type(c, "r) := c ~ II �9 II w. 

Truth in ~t/'rl-oeo. is defined as usual. 
We drop the index TLDeon from ~rL~,eo.  

be presupposed to be clear. 
when the language is clear or can 

Remarks 
(1) The extension of k cog" in w is independent  of w. So when t has a natural 

kind, it has ~that kind in all possible worlds. This formalizes the intuition 
that being aLmember of a natural kind belongs to the essence of an object, 
where the essence of an object can be defined as the underlying structure of 
the object. (Cf. Kripke [11,12] and Putnam [19] discuss the concept of a 
natural kind, Wieringa [24] applies this to object-oriented conceptual 
modeling.) 

(2) Our semantics requires every constant to be in the extension of at least one 
natural kind. 

(3) The extension of a role name in a world must fall within the extension of 
the existence predicate in that world. This formalizes the intuition that 
II t II w ~ II r II w if t denotes an object actually playing role r. Whereas a role 
is something an object has in a certain context, a natural kind is an 
underlying structure of an object independent  of context. 

(4) Sort names in many-sorted logic denote natural kinds, not  roles. Thus, it is 
wrong to formalize Student, Employee etc. as sort names. 
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Note that since our logic is not many-sorted, we need not define the argument 
sorts of predicate symbols and the argument and result sorts of function symbols. 
Thus, our syntax is unsorted. However, we must now require from every theory in 
TLDeon that there are type axioms for all predicate and function symbols that it 
uses. These must be of the form 

P ( X l , ' " , X n )  ~ type(xl, ~1) A . . .  A type(Xn, zn)" 

So where many-sorted logic gives the argument and result sorts in the signature of 
the theory, we must give them in the theory itself. 

TLDeon has the advantage over many-sorted logic of being able to say that the 
type of an object changes. Assuming that Person ~ ~ and Employee ~ ~ ,  we can 
specify 

Vx(  type(x, Person ) ,x, [ hire( x )] type(x, Employee )). (12) 

Since an object cannot change its natural kind, we cannot consistently specify 

Vx(  type( x, Person) r [ die( x )]~type( x, Person)). (13) 

4. Specifying necessary and sufficient conditions 

We can now express knowledge about classes of objects. In order to be clear 
about the role of necessary and sufficient conditions in the expression of 
knowledge, we give here a classification of IC's with respect to this aspect. All 
IC's we consider in this section are of the form 

Vx: ~ ( ~ ( x ) ~  ~ ( x ) )  

with ~(x) ,  qP(x) ~ TLDeon. 

DEFINITION 4.1 
1. In 

Vx: ~ ' ( ~ ( x ) ~  ' / ' (x)),  (14) 

�9 (x) is called a sufficient condition of 9 ( x )  for objects of type % and 'P(x) 
a necessary condition of ~ (x)  for objects of type ,r. 

2. In 

Vx: "r( ~ ( x )  =, [a(x)l  g '(x)) ,  (15) 

�9 (x) is called a sufficient precondition of a(x)  with respect to g'(x) for 
objects of type 'r. 

3. In 

Vx: "r([a(x)]~(x)=~ g ' (x)) ,  (16) 

g'(x) is called a necessary precondition of a(x)  with respect to ~ ( x )  for 
objects of type ~-. 
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There is no concept of "sufficient postcondition". Postconditions are always 
necessary, but this is opposed to possibility, whereas necessary preconditions are 
opposed to sufficient preconditions. Thus, q~ in [a]q~ is opposed to ~k in ( a ) + ,  
whereas [a]q~ =* ~k is opposed to q~ =, [a]q~. For example, selling a thing neces- 
sarily changes ownership, but dropping it may possibly break it: 

VPl, P2: Person, t: Thing([sell(pl, t, PE)lown(p:, t)) (17) 

V t: Thing(( drop (t)) broken ( t )). (18) 

Whenever ~ ~ ko, we call �9 stronger than kO and ~/" weaker than ~. The 
strongest statement is false (it implies everything) and the weakest statement is 
true (it is implied by everything). Thus, a sufficient precondition of [a(x)]~t'(x), 
such as ~ (x)  in (15), is stronger than [a(x)]~I'(x) itself. If we weaken ~b(x) in 
(15) until it is equivalent with [a(x)]~(x), then it is the weakest precondition of 
[a(x)]q'(x). So any statement equivalent to [a(x)]~t'(x) is a weakest precondi- 
tion of a(x) with respect to ~(x) .  In particular, [a(x)]~(x) itself is a weakest 
precondition of a(x) with respect to '/'(x). Modulo logical equivalence, one can 
speak of the weakest precondition of a(x) with respect to g'(x) [1]. 

On the other hand, all necessary preconditions of [ a(x)] ~ (x )  are weaker than 
it. If we strengthen ~ (x )  in (16) until it is equivalent with [a(x)]~b(x), then it is a 
weakest precondition of a(x) with respect to ~(x) .  Thus, if ~ ( x )  is the weakest 
precondition of a(x) with respect to ~(x) ,  we must read this as 

" ' / ' (x) is the weakest precondition that must hold so that a(x) necessarily 
leads to ~(x) ;  any weaker precondition does not guarantee that ~b(x) holds 
after a(x) ."  
There are five interesting types of instances of the general IC form, according 

to whether �9 and q" are static or dynamic, and for the second case whether they 
express objective or deontic modalities. 

4.1. STATIC CONSTRAINTS 

These are of the form 

Vx : ~-(~(x) ~ tp(x)) ep is sufficient for tp and ~p is necessary for ~. 

for ~(x), ~p(x) ~ Lstar An example is the following improvement of (5): 

Vx : Animal(type(x, Bird) = warmblooded( x ) ). (19) 

This says that for an animal, being warm-blooded is a necessary condition for 
being a bird, and that for animals, being a bird is sufficient for being warm- 
blooded. 
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4.2. DYNAMIC CONSTRAINTS 

4.2.1. Postconditions 
We are only interested in necessary postconditions, not in possible postcondi- 

tions. An important form of this (with �9 -= true) is 

Vx: ~-([ a (x)]  ~ (x ) )  a leads necessarily to q~. 

for ~(x)  ~ Ls, at. (We do not consider nested postconditions such as [a][fl]q~.) We 
saw already sufficiently many examples of this. An interesting subcase is that of 
role-changes. These are of the form 

Vx : k ( [ a ( x ) ] t ype ( x ,  r) ix E ( x ) ) .  

For example, 

V ep: Person([ register( p)] type( p,  Student)) (20) 

Note that we require p to exist, so that existence need not be explicitly mentioned 
as postcondition. The statement is ill-formed if Student q~ ~ .  

4.2.2. Preconditions 
We are interested in necessary as well as sufficient preconditions. For q~(x), 

~p(x) ~ Lstat, these have the form 

Vx:  .c(ep(x)=~[a(x)]q~(x)) If q~(x), then a(x)  necessarily leads to 
~k(x). q~(x) is a sufficient precondition for 
a(x)  to lead necessarily to q~(x). 

Vx:  ~'(([a(x)]q~(x))~q,(x)) If a(x)  necessarily leads to ~k(x), then 
q~(x), q,(x) is a necessary precondition for 
a(x)  to lead necessarily to ~k(x). 

For example, when the queue of book reservations has n elements, then after 
reserving a book, it has n + 1 elements: 

V n: integer ( queue ( n ) =, [ reserve_ book ] queue ( n + 1) ) ( 21 ) 

When after a reservation the queue has n + 1 elements, then before the reserva- 
tion it has n elements: 

V n: integer ([ reserve_book ] queue ( n + 1) ) =~ queue ( n ) ( 22 ) 

A negative form of sufficient preconditions gives us the form of frame axioms: 

w :  (x) = (x). 
For example 

re1,  P2: Person(--,rnarried(pl, P 2 ) =  [marry(p1, P2)]~married(pl ,  P2)), 
(23)  

which says that marrying is the only way to get married. In other words, the state 
of being married is invariant under any action but marrying. 
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Preconditions for objective modalities have the form 

Vx: "r(POS(a(x))  ~ q~(x)) 

Vx: "r(~(x) = P O S ( a ( x ) ) )  

~ ( x )  is a necessary precondition for a(x) to be 
possible. 
q~(x) is a sufficient precondition for a(x) to be 
possible. 

Similar schemas exist for the other objective modalities. 
For example, someone can only sell something, if he owns it: 

Vp: Person, t: Thing(POS (sell(p, t)) ~ own(p,  t)). (24) 

If you are a person, you can borrow a book: 

Vp : Person, b: Book(POS( borrow( p, b) ). (25) 

These are the preconditions that are often used in database research. 
Preconditions for deontic modalities have the form 

Vx : T(P(a(x))  ~ ~(x) )  a is allowed to occur only if ~ holds. 
Vx: "r(~(x) ~ P (a (x ) ) )  If ~b holds, a is allowed to occur. 

Similar schemas exist for the other deontic modalities. 
For example, 

VPl, Pz, P3: Person, t: Thing(P(selt(pl, t, P2)) 

--n3ep3 : promised(p 1, t, P3)/k ~PE =P3, (26) 

which can be paraphrased as "Someone can sell something only if he has not 
promised it to someone else." Finally, " i f  someone is a manager,  he or she is 
permitted to park" 

V m ( type( m, Manager ) ~ P( park ( m )). ( 27 ) 

5. Inheritance of constraints 

DEFINITION 5.1 
TLoeon is extended to a language OTLDeon with ordered types by  adding a 

distinguished binary infix predicate ~<. The only well-formed atomic formulas 
that can be built with ~ are of the form "r 1 ~< -r E for "rl, "rE ~ T. The semantics of 
~< is: 

"rl ~ "r2 := Vx(type(x ,  "rl)~ type(x, "rE))- 

THEOREM 5.2 
1. ~< is a partial ordering on T. 

2. If "rl~<'r:, then II'rlllw-C-II'r=llw. 
3. Ilkllw=llkllw, for all w, w'  ~ 9 ~ / "  L. 
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4. If for each role name r, there is a possible world w ~ / . ~ , . , , ,  with 
II r II w = g  and for each natural kind name k, there is a world w with 
I I k I I w 4: ~, then if k ~< "r, then ~- ~ .gU. 

5. k 1 < k2 iff there is a w ~ ~ / "  with II ka II w _c II k2 II ~. 
6. rl <~r 2 iff Ilrallwc_llr211w for all w ~ W ' .  

Proof 
1, 2 and 3 are trivial. 
For 4, note that k ~< ~- implies Vx(type(x,  k) =~ type(x, "r)), so 

II k II w - II ~ II w for all w e ~ / / ' .  

There is a world with II k II w 4 : ~ ,  and because k ~.~U, by 3 we have II k II w ~ for 
all w. So II ~" II w 4: ~ for all w e ~ r .  Now, if ~- would be a role, then there is a w 0 
with II r II wo = ~ ,  and we would have 

~ 4: IIk 11 w o -  IIT II wo = ~ ,  

which is a contradiction. 
5 is trivial, and 6 follows from the definition of < and the truth definition. [] 

Remarks 
(1) Under the weak assumptions that for each role there is at least a world 

where it is not played, and that each natural  kind has a non-empty 
extension, we have that no role can be larger than a natural  kind. This has 
a practical consequence for the type hierarchy specified by the information 
analyst, for it excludes certain taxonomic structures. 

(2) 4 and 5 give a way how to verify, in the UoD, whether the ordering on type 
names is correct. The condition on the relative ordering on role names is 
quite strong. In general, if there is a world with II 1"1 II w _c II rE II w, we need 
not have r 1 ~< r 2. For example, if in the current world all students are 
employees, we need not have Student < Employee. On the other hand, if for 
natural kinds Car and Vehicle we have II Car II w __c II Vehicle II w in at least 
one world, then Car <~ Vehicle. 

DEFINITION 5.3 
Let Spec be a specification in OTLneo,. The partially ordered set (poset) 

(T, ~<) specified by Spec is called the taxonomy specified by a specification in 
OTLDeon. If "r 1 ~< "r2, then "r 1 is called a specialization of "r 2 and "r 2 a generalization 
of ~'1- 

5.1. DOWNWARD INHERITANCE 

The basic property of taxonomies is of course that  properties inherit down- 
wards. We call this basic inheritance and state it in the following theorem. 
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"C 1 

'~2 '~3 

.q 

Fig. 2. Inheritance relations. 

THEOREM 5.4 

"1"2 '~< 'i'l ~ ( V X :  'TI(/)(X ) ~ VX':  'T2(~(X)). 

Proof 
Trivial. [] 

We are generally interested in situations as in fig. 2, where ,q has several 
specializations and "r 4 has several generalizations. Downward  inheritance is 
inheritance of properties from ,q to types smaller than ~-~. Basic inheritance says 
that the number  of properties increase as the types get smaller. To determine 
thoughts, we fix a few concepts. 

DEFINITION 5.5 

The inheritance of constraints from a single source is called single inheritance, 
and inheritance from multiple sources multiple inheritance. Inheritance in the 
direction of the arrows is called downward and inheritance against the direction 
of the arrows upward. 

In fig. 2, there is single downward inheritance from ~'1 to "r 2 and "r3, and single 
upward inheritance from "r 4 to "r 2 and ~'3. There is multiple upward inheritance 
from "r 2 and ~'3 to ~'1, and multiple downward inheritance from ~'2 and "r 3 to ~'4- 

In this section we look at the two possible cases of downward inheritance for 
our standard form of constraints Vx:  ~-(@(x) = '/'~(x)). 

Single downward inheritance from ~'1 to ~'2 and "r 3 is trivial and is described by  
the basic inheritance property. Multiple downward inheritance of necessary or 
sufficient conditions is a bit less trivial but  follows straightforwardly from basic 
inheritance. 
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COROLLARY 5.6 
In figure 2, if 

Vx: ~ '2(~2(x)~ x/'(x)) and Vx: ,/'3((/)3(x ) ~ X~(X)) 

then 

Vx: , , (~2(x )  V ~ 3 ( x ) ~  ~'(x)) ,  

and if 

VX: T2(I~(X ) =~ xP2(X)) and Vx: %(~(x)=~ visa(x)) 

then 

W: "r~(~(x)~ ~ (x )  A ~(x)) .  

Proof 
By basic inheritance, in the first case we have 

VX: "/'4(((~ID2(X ) ~ X/'t(X))) A (VX: "/'4 ((/)3(X) ~ '~ (X) ) ) .  

By the laws of predicate logic, this is equivalent to 

VX" 'r4(~2(X ) V ~ 3 ( X ) =  XP(X)), 

and similarly for the second case. [] 

We can summarize this by the slogan 

necessary conditions inherit downwards conjunctively, and sufficient condi- 
tions inherit downwards disjunctively. 

This implies that necessary conditions become stronger as we go down in the 
taxonomy, and sufficient conditions become weaker. In particular, necessary pre- 
conditions of actions become stronger, and sufficient preconditions weaker, as we 
go to more specialized types. This is the reason why in the student example 
mentioned in the introduction, where we want the precondition for enrollment for 
more specialized types to be stronger, we must specify necessary and not 
sufficient preconditions. This example is formalized at the end of the following 
section to illustrate upward inheritance. Here we give some examples of corollary 
5.6, following the classification of IC's given in section 4. 

For static constraints, take StudEmp <~ Student and StudEmp <~ Emp, and 

Vs: Student, n: Natural(age(s, n) =~ n > 18) (28) 

Ve: Emp, n: Natural(age(s, n ) ~  n> 21). (29) 

Then the conjunction of these necessary conditions hold for student employees. 
Assuming some natural axioms for > on Natural, we get 

V se: S tudEmp, n: Natural(age(se, n) ~ n > 21). (30) 
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For postconditions, the theorem implies that the effects of an action accu- 
mulate as we go down the taxonomy. For example, suppose all persons have a 
salary and all students and employees are persons. Let salary be defined in the 
axioms as a function with argument sort Person and result sort Natural .  Now let 
salary increases be defined somewhat disadvantageous for students: 

r e :  E m p ,  n: Natural  ( s a l a r y ( e , n ) = *  [ inc - sa lary (e ) ] sa lary (e )=  n + 10) (31) 

Vs : Student ,  n: Natural  ( salary( s , n  ) ~ [ inc-salary( s )] sa lary(s )  = n - 10). 
(32) 

If there are student employees, we get 

Vse" S tuden tEmp,  n : Natural  ( salary(se ) = n 

=* [ inc-salary( se )] salary( se ) = n + 10 

A [inc-salary(se )] salary(se)  = n -- 10), (33) 

which implies 

Vse " EmpStuden t ,  n" Natural  ( salary( se ) = n =* [ inc-salary( se )] salary( se ) 

= n + 10 A salary(se)  = n -- 10), 

which, assuming the usual axioms for natural numbers, implies 

Vse " EmpStuden t ,  n" Natura l (  salary( se ,n  ) ~ [ inc-salary( se )]false).  

The result is that according to the specification, an attempt to execute inc-salary 
for student employees deadlocks. This mistake in the specification could have 
been avoided if common constraints are specified as high up in the taxonomic 
hierarchy as possible. Because salary is a person attribute, the constraint should 
have been specified there: 

V p  " Person, n: Natural  (salary( p ,  n) ~ [ inc-salary( p )] s a l a r y ( p )  = n + 10). 
(34) 

If exceptions must be made to this general rule, then this can be done by defining 
appropriate disjoint subtypes of person. We illustrate this in section 6.3. 

We can of course monotonically add more effects of an action when we 
specialize. Suppose each person has an age, which is increased by the inc-age 
action for all persons. For employees, an employer wants to specify as extra effect 
of inc-age a bonus salary increase. This can be specified as follows: 

Ve" E m p ,  n: Natural  ( sa lary(e ,  n ) ~  [ i n c - a g e ( e ) ] s a l a r y ( e ) =  n + 10). (35) 

If this is the only extra effect specified for inc-age, then it is not derivable that 

Vs:  Students ,  n: Natural  ( sa lary(s ,  n ) = ,  [ i n c - a g e ( s ) ] s a l a r y ( s ) =  n + 10). (36) 
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Emp I 

Licence - 
Manager holder 

Licence -holding - 
Manager 

Fig. 3. Employee taxonomy. 

We can also redeem our promise delivered in the introduction to show that (1') 
and (2') implies (3'). We have that, with Undergrad <~ Student and GradCourse <~ 
Course, (1') implies 

Vc: GradCourse, s: Undergrad [enroll(c, s)]enrolled(c, s ) = * ~ f u l l ( c ) ,  (1") 

which gives (3') with (2'). 
As an example concerning deontie modalities, we will try to find out whether 

the boss has more rights, as asked in the subtitle of this paper. We assume 
Boss <~ Emp. We then have 

Ve: Emp (P a ( e ) ) =  Vb: Boss (Pa(b)) ,  (37) 

so that the boss seems to have more permissions than the average employee. On 
the other hand, the boss has also more obligations, for 

Ve: Emp ( O a ( e ) ) =  Vb: Boss (Oa(b) ) ,  (38) 

which may be a comfort to some. 
Looking at the multiple downward inheritance of preconditions, the picture 

becomes more complicated. In fig. 3, we show a taxonomy of employees, 
managers, and licence holders. Licence holders are employees who have a licence 
to park their car on numbered parking lots. Managers, on the other hand, have 
more rights. For them, permission to park on any lot is granted if the lot is free. 
These constraints are illustrated in fig. 4, where we omitted the quantifications 
Vm : Manager, Wot : ParkingLot, and Vlh : Licence-holder. Clearly, multiple 
downward inheritance gives us an unwanted implication, as illustrated in fig. 4. 
This is not inconsistent in itself, but it would be inconsistent with any fact 
representing a particular lot to be not full and unnumbered. 
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full (lot) ~ P(park (man, lot)) P(park (lh, lot)) ~ numbered (lot) 

.-, full(lot) ~ numbered (lot) 

Fig. 4. Inconsistent multiple downward inheritance. 

Before we improve this specification, note the following implication of the 
constraint for licence holders: 

P ( p a r k ( l h , l o t ) )  =* numbered(lot)  f - ~ n u m b e r e d ( l o t )  =~ F ( p a r k ( l h , l o t ) ) ,  (39) 

where we again dropped the quantifications. A licence holder is not permitted to 
park on any unnumbered lot. This is reasonable, but may not be what we think 
we specified with the P-form of the constraint. 

The source of the problem in fig. 4 is that the sufficient condition of 
P( park (man ,  lot)) interacts in an unwanted way with the necessary condition for 
P ( p a r k ( l h ,  lot)). The more logical way to do this is to specify P( park  ( man, 
lot)) ~ ~ full(  lot ). Put this way, it is just a logical necessary precondition of any 
park action that the lot be empty. In accordance with the rule that constraints 
should be specified as high up in the taxonomy as possible, we get fig. 5. 

As a final illustration of how multiple downward inheritance can accumulate 
to unwanted constraints, consider figs. 6 and 7. If factory workers are permitted 

P(park ( emp , lot)) ~ .-, full (lot) 

P(park(lh, lot)) ~ 
P(park (man, lot)) =~ -, full (lot) numbered (lot) ^ -, full (lot) 

P(park(lh-man, lot)) ~ 
numbered (lot) ^ --, full (lot) 

Fig. 5. Improved specification. 
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Manager FactoryWorker 

I FactoryManager I 

Fig. 6. Another employee taxonomy. 

to park on unnumbered lots, and managers are permitted to park on numbered  
lots, then factory managers are forbidden to park anywhere: 

V fm : FactoryManager, Vlot : ParkingLot (P( park ( fm, lot)) 

=~ ~numbered (lot) A numbered (lot)) ~- 

V fm : FactoryManager, Vlot : ParkingLot(P( park ( fro, lot)) ~ |alse) 

r- V fm, Vlot: ParkingLot(F ( park ( fm, lot))). 

We fix this example after we discuss upward inheritance in the next section. 

5.2. UPWARD INHERITANCE 

To infer something about upward inheritance, we must add closure assump- 
tions. 

I F(park(fm, lot)) 

Fig. 7. Unintended constraint inheritance. 
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DEFINITION 5.7 

1. I f  type(x, "q) ~ type(x, "rE) V type(x, "r3), t h e n  "q is ca l l ed  the  cover o f  o" 2 
and  "r3, and  we wr i t e  o- l = o- 2 v o- 3. 

2. I f  type(x, "r4) r type(x, ~ A type(x, "r3), t h e n  ~'4 is ca l l ed  the  intersection of  
~2 a n d  0-3, a n d  we  wr i t e  T 4 = o- 2 A z3- 

T h e  fo l lowing  t h e o r e m  is o n l y  s t a t ed  f o r  covers ,  b u t  an  o b v i o u s  a n a l o g o n  ho ld s  
f o r  in te r sec t ions .  W e  wr i te  o- 2 tA "r 3 f o r  the  least  u p p e r  b o u n d  o f  "r 2 a n d  "r 3 (see the  
a p p e n d i x ) .  

THEOREM 5.8 

1. I f  ~'1 = '1"2 V "/'3, t h e n  " / ' 1 =  T2 I I T3 . 

2. '/'1 = T2 VT3 i f f  IITlllw=ll~E{IwUl{T3{Iw 
3. O ' 2 7 O ' 3 = O ' 3 7 " / ' 2  . 

f o r  all w ~ ~YCP. 

Proof 
1. W e  h a v e  

Vx(type(x ,  "i"2))~ Vx(type(x ,  o-2) V type(x, 0"3))::~ Vx( type(x ,  '/'1)), 

so  7 2 ~< o- 1, and  a n a l o g o u s l y  "r 3 ~< ~'1. F u r t h e r m o r e ,  i f  t he re  is a "r' ~ T w i th  ~'2 ~ 0" 
a n d  o- 3 ~ .r ' ,  t hen  

Vx( type(x ,  0-2) V type(x, o-3) = type(x, ~") ) ,  

SO 

Vx(type(x ,  T I ) ~  type(x, 0- ')) ,  

so "q ~< 0-'. So "q is the  leas t  u p p e r  b o u n d  o f  ~'2 a n d  ~'3. 
2. By  the  t ru th  d e f i n i t i o n  fo r  v in  type(x, ~2) V type(x, T3). 
3. Trivial .  [] 

N o t e  t ha t  the  c o n v e r s e  o f  1 is n o t  t rue .  I f  Vehicle = Car U Airplane, t h e n  we  

w o u l d  h a v e  Vehicle = Car v Airplane o n l y  i f  11 Vehicle I1 w = II Car II w u 

Vehicle 

Car Airplane Boat 

Fig. 8. A cover. 



R.J. Wieringa et aL / The inheritance of integrity constraints 417 

[[ Airplane II w in all possible  worlds.  But  there  m a y  be  Boats that  are Vehicles. If  
all vehicles are cars, boats ,  or airplanes, then 

II Vehicle II ~ = II Car II ~ u II Airplane II w U II Boat II w 

for all w ~ ~ " .  W e  then have 

Vehicle = Car U Airplane U Boat -- Car U Airplane = Airplane U Boat 

= Car U Boat. 
See fig. 8, where  the arrows indicate  the direct ion of  inheri tance,  f rom larger to 
smaller types. 

N o t e  secondly that  we can omi t  the brackets  in Car U Airplane U Boat, because  
Car U Airplane, Airplane U Boat and Car U Boat all exist. O n  a poset ,  U (and  
rq) is in general a part ial  opera tor ,  and  we can  write  "11 U '12 U T 3 only  if 
('11 U "12) U "13 and "11 U ('r 2 U "r3) b o t h  exist and are equal.  In general ,  if these exist, 
then they are equal  (see appendix) ,  and in the example,  they  h a p p e n  to exist. On  
the other  hand,  we cannot  wri te  meaningful ly  

Vehicle = Car v Airplane V Boat, 

because  the appropr ia te  covering types  Car V Airplane, Car V Boat, and  Airplane 
V Boat do not  exist in our example  2) 

THEOREM 5.9 
Let  in figure 2, "q = "r 2 V "13. Then,  if 

Vx :  "12(@2(x) = g ' ( x ) ) a n d V x ' ' 1 3 ( @ 3 ( x ) =  g ' (x ) )  

then 

VX: "11((/)2(X ) /'~ t~)3(X ) = xP'(X)), 
and  if 

Vx: "12((/)(x) ~ XP2(x)) and Vx: "13((/)(x) ~ ~/'3 (x)) 
then 

Vx: %(x)  v 

Proof 
By rl = "12 V "13, we can conc lude  

V x ( t y p e ( x ,  "11) =~ type(x,  "12) V type(x ,  "13)). 

Then  we have 

Vx: ^ Vx. 

Vx(  type( x ,  "r2)= ((/)2(x) = XT'(x))) A V x (  type( x ,  "13) = ( ~3( x ) = x/'(x))) 

2) We are careful to avoid the phrase "associative operator" in the above, for "associative" can be 
defined in several, non-equivalent ways for partial operators, and we don't want to commit 
ourselves to any of these ways. 
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�9 x, Vx( type(x ,  z2)V type(x, z3)=  (~2(x) A ~/i3(x ) = g ' (x)))  

�9 ~ Vx( type(x ,  ~1)~ (~2(x)/x ~3(x)=~ gt(x))).  

The second part is analogous. [] 

There is no corresponding result for single upward inheritance from ~'4 to ~2 
and ~'3, as shown by the following fact. 

F A C T  5 . 1 0  

In fig. 2, There is no upward inheritance from "r 4 to "r 2 and "r3, even if 
T4 ~--- T2 A '/" 3 . 

Proof 
We have 

V x :  A 

= Vx( type(x ,  ~'4) = (~2(x) A ~ 3 ( x ) =  g '(x)))  

r Vx( type(x ,  ~'2)A type(x, "r3)=~ (~b2(x) A ~3(x)=~ gt(x))) 

Vx(( type(x ,  ~2) = ( tb2(x) = q(x)) ) /X (type(x,  ~'3) =~ (~3(x) = ' / ' (x)))) .  
[] 

The reason for this asymmetry lies in the simple fact that inheritance is 
basically the implication relation, and this is an asymmetrical relation. The reason 
that we need a closure assumption for multiple upward inheritance but not for 
any case of downward inheritance is that inheritance goes downwards, not 
upwards. 

We can summarize the theorem by the slogan 

If ~1 ='f2 V ~, necessary conditions inherit upwards to ,q disjunctively, and 
sufficient conditions inherit upwards to ~'1 conjunctively. 

Thus, necessary conditions get weaker as we generalize, and sufficient conditions 
get stronger. To illustrate this, consider fig. 7 again. The analyst probably 
intended to specify sufficient preconditions instead of necessary preconditions. 
Sufficient preconditions get weaker as we specialize and stronger as we generalize, 
but this does not imply a contradiction in the example, as fig. 9 shows. (We 
assume that all employees are factory workers or managers, using inclusive or.) 

As an example of the upward inheritance of objective modalities, take the 
example given in [3] which we started with in the introduction. Let 

GradStudent <~ Student, 
Undergrad ~ Student, 
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false ~ P(park (emp, lot)) 

--,numbered (lot) =~ P(park (man, lot)) I numbered (lot) ~ P(park (lh, lot)) 

true =~ Pfpark(lh-man, lot)) 

Fig. 9. Improvement of fig. 7. 

419 

GradCourse ~ Course, and 

UnderGradCourse ~ Course, with 

Student = UnderGrad V GradStudent, 

Course = UnderGradCourse V GradCourse, 

then the example is formalized by the following axioms. 

Ms: Student, c: Course (POS(enroll(s, c)) =* ~fu l l (  c)) 

V u: Undergrad, c: Course (POS(enroll(u,c)) 

( t < deadline) A ( enrollments(c) < undergrad-max )) 

V u: Undergrad, gc: GradCourse (POS( enroll ( u, gc)) ~ permission ( u, gc)) 

(40) 

(41) 

(42) 

Vu : UnderGrad, uc : UnderGradCourse (POS(enroll(u, uc)) 

=* has-preparation( u, uc ) ) (43) 

Vg: GradStudent, uc : UnderGradCourse, n : Natural (POS(enroll(g,  uc) ) 

~ y e a r ( g ,  n) A n >  3). (44) 

We now know that the necessary enrollment condition -~full(c) is inherited 
conjunctively by all types of students. All preconditions in the example are 
necessary preconditions. Because they are inherited upwards disjunctively, we 
also know that their upward inheritance causes no inconsistencies or impossible 
preconditions for more general types. 
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6. Discussion 

6.1. THE DISTINCTION BETWEEN NECESSARY AND SUFFICIENT PRECONDITIONS 

The strange experience we had while writing this paper is that constraint 
inheritance is, or should be, easy, because it concerns only the logic of the 
implication sign, but that at the same time, constraint inheritance is an extremely 
slippery subject, because our common sense supplies so many assumptions that 
are unwarranted by formal logic. A number of unwarranted assumptions that we 
have encountered are: 

1. When specifying preconditions, a temporal ordering is ascribed to the 
implication sign that is not there; 

2. necessary and sufficient preconditions are confused; 
3. an implicit, non-monotonic, completion assumption is often made. 

These implicit assumptions supplied by common sense can be illustrated by the 
intuitive explanation of preconditions in Khosla et al. [10], who give a correct 
formal semantics of dynamic logic, but paraphrase the constraint 

~Lecturer( TOM ) ~ [ Hire( TOM )] Lecturer(TOM) 

informally as 
"Tom can only be hired as a lecturer if he is not already one." 

The "only if" phrase shows that what is really meant is 

[ Hire (TOM)] Lecturer(TOM ) ~ ~Lecturer(TOM ), 

illustrating 2 and 3 above. Furthermore, they define a precondition as 
" that  assertion which must be true before the update can be applied", 

which illustrates 1 above, if we assume that reading a temporal order into imply 
causes us to see the formula left of it as a precondition, and the formula right of it 
as a postcondition. Perhaps we should reiterate that only the box operator [a] 
implies a temporal ordering. 

6.2. CONSTRAINT COMPLETION 

A number of CM specification languages, such as TAXIS [3] and A C M / P C M  
[4], allow the specification of preconditions for actions. The logic of these 
preconditions is such that if they are not satisfied, the action is not performed. 
Thus, they implement the informal statement 

1. -, g' =~ (a  is not executed). 
This is not formalizable in OTLDeo,,. Consider the following candidates. 

2. [a]~ =* ~/'. "(If  you would execute a, then afterwards, ~ necessarily holds) 
implies that currently, g" holds." This is, on the one hand, saying too much, 
because it mentions ~, and on the other, saying too little, because it is a 
counterfactual statement, whereas 1 says that a actually occurs. 
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3. P O S ( a ) ~  q'. " I f  a can be executed, then currently, g' holds." This 
eliminates ~, but does not yet introduce the idea of actuality. 

4. NEC(o0 =, g'. " I f  a will necessarily be executed, then currently, g' holds." 
This contrasts with 1, because there, a could possibly not  occur, but here, 
we specify that a necessarily occurs only if �9 holds. 

5. P(a)  ~ ~.  " I f  a is permitted, then currently, q" holds." This comes as close 
as we can get in OTLDeon to 1, for it is equivalent to --,'/" =~ F(a).  The 
difference is still that 1 carries a connotation of actuality that we have not 
yet captured. Instead, we have formalized only the statement that a is not 
permitted to occur if '/" does not hold. What we would like is the following: 

6. EXEC(a) = St. " I f  a is to be executed, then currently g" holds." We simply 
note here that we have not given a formal semantics to the statement that, 
from the range of possible next actions, a will actually be executed. The 
opposition actuality/possibility is more informative than the opposition 
necessity/possibility and must await future formalization. 

So far, we merely noted that we have not yet formalized the intention of some 
information analysts completely, when they specify preconditions of actions. 
Next, consider what we have formalized with a constraint like 5 above (or 6, if we 
would have a formal semantics for it). We have specified by 5 only when a is 
forbidden (when currently --1 g' holds), but  not when a it is permitted. However, it 
is implicitly assumed in languages like TAXIS and A C M / P C M  that �9 is, not 
only a necessary precondition, but the strongest necessary precondition (modulo 
logical equivalence) for a to be permitted. We have shown in section 4 that the 
strongest necessary precondition is actually the same as the weakest sufficient 
precondition, and that both are equivalent to the weakest precondition of a 
(possibly with respect to a postcondition). So the analyst apparently intends 

P(a) r ko, (44) 
although he or she has specified 

P ( a )  ~ �9 (45) 

Apparently there is a kind of hidden "completion" of the preconditions, analo- 
gous to predicate completion in Prolog. We claim that this hidden assumption 
should be made explicit, so that the intention of the analyst agrees better with 
what he or she has specified. Moreover, if we do this, another type of hidden 
assumption, which says whether a type covers its subtypes, is made explicit as 
well, because constraint completion must be preceded by a process which we call 
constraint collection. We get the following two steps. 

1. After having specified a set of constraints for a taxonomic network, all 
constraints that accrue to a type should be collected. This means that for 
each g', the necessary a n d / o r  sufficient conditions ~ specified for it for 
different ~-'s should be collected using upward and downward inheritance. 

2. Complete the resulting conditions for g, by replacing the implication by an 
equivalence. 
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The aim of step 1 is to find out if what we have specified is consistent. 
Syntactically, the collecting process can be carried out algorithrnically. The 
semantic problem of determining to which formulas a condition is equivalent, 
and of simplifying the resulting conditions, is in general undecidable. Step 1 may 
require the addition of covering axioms for some types in order to facilitate 
upward inheritance 3). Different sets of covering axioms will yield different 
outputs. Assuming a particular set of covering axioms, the resulting constraint set 
is logically equivalent (using the axioms of dynamic logic) to the input constraint 
set. The result of step 1 is that we have a necessary condition and a sufficient 
condition for '/', 

~P=*~line c and !/is~f::*g'. 

The aim of step 2 is to express the intention of the analyst more accurately. 
Doing this, we really commit the fallacy known in Aristotelian logic as the fallacy 
of the consequent ([9], p. 596), which consists of assuming that a condition and its 
consequent are convertible. There are often situations where one wants to make 
this fallacy, but when we do that, we should at least be aware of its problems. 
First of all, completion leads to 

l~suSC~ X~' c~ l~nec, 

and this may simply be inconsistent. Secondly, even if it is consistent, it is in any 
case a non-monotonic operation, for the result implies the input but not vice 
versa. It is a generalization of predicate completion of Prolog [6,13] and remi- 
niscent of McCarthy's [14] circumscription. In fact, predicate completion first 
collects the sufficient conditions that are given for a predicate P(x) ,  which gives 

E,(x) V . . .  V E,,(x) ~ P (x ) ,  

and then minimizes the extension of P(x)  by taking the completion 

e,(x) v . . .  v P(x). 
This is a special case of completion as described above. Constraint completion 
has the same problems as predicate completion. For example, we have ~ ~ ( ~  V 
�9 ) r (7 �9 =* ~). So if �9 is any integrity constraint, then we can consistently add 
--1 �9 =* �9 to the specification, saying that --1 �9 is a sufficient condition for ,~. But 
then constraint completion gives us an inconsistent specification with 
~ ~ .  

6.3. EXCEPTION SPECIFICATION 

The archetypical case of exception specification is that of non-flying penguins. 
From 

Penguins <~ Bird, (46) 

3) The addition of covering axioms agrees with an ancient Aristotelian prescription for how to 
design taxonomies, that each subdivision should be exhaustive ([9], p. 117) and ([20], p. 52). 
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Vb : Bird (POS( fly( b ) ) ), 

Vp : Penguin (IMP(f ly(p)))  

we can derive 

Vp: Penguin ( IMP(f ly(p))  A POS( f ly (p) ) ) ,  

(47) 

(48) 

(49) 

which implies Vp:Penguin (false). This is inconsistent if there is at least one 
penguin. 

The inconsistency is caused by the fact that we view penguins as an exception 
to a rule. We specify the rule (47) for all birds, whereas it is really a rule 
applicable only to a subtype of birds. If we specify it as such, the inconsistency 
disappears. For example, we can specify 

Penguins <~ Bird, 

NonPenguins <~ Bird, 

V n : NonPenguin (POS(f/y(n))) ,  

Vp : Penguin (IMP(f ly(p))) ,  

and the inconsistency has disappeared. 
However, this is unsatisfactory because we had to add a rest-category to the 

taxonomy for which the problem may very well be repeated if our knowledge 
about this category increases. A more elegant solution has been suggested by 
McCarthy in a later paper [15]. To each rule, an abnormality predicate is added: 

V b: Bird (--1AbnormalBird(b) = POS( fly(b))),  (50) 

Vp: Penguin (~AbnormalPenguin ( p i ~ IMP( fly ( p ) ) ), ( 51) 

Vb : Penguin ( AbnormalBird( b )). (52) 

We then apply circumscription to minimize the extension of the abnormality 
predicates. In this case it comes down to strengthening (52) to 

V p (type( p, Penguin ) ,x, abnormalBird ( p ) ) . (53) 

The advantage of this method is that we can easily extend the specification 
without having to retract or change rules specified earlier. (The axioms implied by 
the circumscription operation will of course change, but these are not explicitly 
specified by the designer). So if we add 

Ostrich ~ Bird, 

Vp : Ostrich ( AbnormalBird( p ) ), 

to (50)-(52), then circumscription gives us that 

Vb (type(b, Penguin) V type(b, Ostrich)r AbnormalBird( b )) 

(54) 

(55) 

(56) 

is valid, which is not equivalent to the result (53) of circumscription on the 
abnormality predicates in the original theory. 
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With the use of abnormality predicates, we can specify exceptions to the rules 
without having to change them in the CM specification. The price is that we need 
a non-monotonic operation to circumscribe the set of abnormal cases. 

Instead of constraint completion as sketched above, we can apply a dynamic 
variant of circumscription to specifications in OTLDeo,. Very sketchily, one would 
proceed as follows. Using an abnormality predicate for each type/ac t ion  pair 
specified in the CM specification, we get the following canonical form for 
sufficient preconditions (specified explicitly or derived non-monotonically): 

Vx:  T (#  A ~ E X C :  7: a ( x ) =  P(a) ) ,  

where EXC:  "r: a stands for a predicate introduced by the analyst that should be 
read as "x is not an exceptional object of type "r with respect to action a." For 
example, 

Vx  : Student ( graduate(x)/x -~EXC : student: enroll( x ) = P(enrol l (x)) ) .  

If ~, specifies an exception to this rule, we could add the axiom 

Vs : Student( ep( x ) ~ EXC : student: enroll (x)  A F( enroll( x ))). 

6.4. METHODOLOGICAL CONSEQUENCES 

Psychological research has shown that taxonomies are learnt neither top-down 
nor bottom-up, but from the middle out [21]. When a novice starts learning the 
structure of the UoD, he or she will usually start at the basic level, which is the 
level at which objects have the largest number of discriminating characteristic 
with respect to their neighbors in the taxonomy, or the level of the types of 
objects that are most frequently handled. Only later, finer distinctions and less 
frequently encountered categories of objects are added. Conversely, when UoD 
specialists ("domain specialists") explain the structure of the UoD to novices, 
they start with basic level objects. For example, when asked to mention a typical 
piece of furniture, subjects typically mention a chair, and not "an  object to sit 
on" (which is more general than the concept of a chair, and includes couches as 
well), nor "a  kitchen chair" (which is lower down the taxonomy). 

Information analysts are usually novices with respect to the UoD of which they 
must specify a CM. This means that in general, we tend to specify the constraints 
for ~'z and "r 3 in figure 1 first, and then proceed to add zl and ~'4 to the taxonomy, 
and specify their constraints. The methodological consequences of the theorems 
about upward and downward inheritance are then that 

1. they tell us if and how the constraints specified already must be " taken 
along" to newly added types, and 

2. they make clear when we should require of a type that it covers its subtypes, 
viz. if we want a constraint to inherit upwards. 

3. Furthermore, they allow us to deduce consequences from our specifying 
preconditions as necessary or sufficient preconditions, so that we can 
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express more clearly and accurately what we want to specify. For example, 
if we want a condition to be stronger for more specialized types, it must be a 
necessary condition, and if we want it to be weaker when we go down in the 
taxonomy, it should be a sufficient condition. But whichever choice we 
make, this has further consequences for the way constraints interact in 
multiple downward or upward inheritance. 

4. Finally, we also showed that finding sufficient preconditions for actions is 
usually difficult, for we can never be sure to have found all possible cases. 
The methodological consequence of this is that we should avoid specifying 
sufficient preconditions as far as possible, and stick to necessary precondi- 
tions only. (This implies avoiding constraint completion as well.) 

As an illustration of 1, we noted several times already that constraints should 
be specified as high in the taxonomy as possible (but not higher, witness the 
non-flying penguin example). This is an easy consequence of theorem 5.4, for if in 
fig. 2 

~ 1 = % V %  and Vx:%tb(x)  and V x : % ~ ( x ) ,  

then we have 

Vx: 

The set of constraints specified for a cover should thus include the intersection of 
the sets of constraints specified for its subtypes. 

7. Summary and conclusions 

In section 1, we motivated the usefulness of deontic logic for constraint 
specification, in particular for the specification of IC's that may be violated by 
the UoD. In section 2, we briefly introduced the language ZDeon , a deontic 
extension of dynamic logic which can be used to specify static, dynamic, and 
deontic IC's. We then introduced in section 3 types to LDeon a s  special constants, 
which gave us the language TLeeo~, and added an ordering on type names in 
section 5, yielding the language OTLDeon. In this language, a taxonomy can be 
specified. 

In section 4, we classified constraints, particularly dynamic constraints, with 
respect to whether they specify pre- or postconditions, and the kind of dynamic 
modality for which a precondition is specified. Inheritance was studied in section 
5, where it is shown that necessary preconditions for actions inherit downwards 
conjunctively and, under a covering assumption, upwards disjunctively. Sufficient 
preconditions for actions inherit downwards disjunctively and, under a covering 
assumption, upwards conjunctively. These facts are illustrated with a large 
number of examples. 
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The main contributions of this paper are 
- the distinction between roles and natural  kinds in section 4, which allows us 

to specify preconditions for role changes explicitly; 
- the distinction between necessary and sufficient (pre)conditions in section 4, 
- an exposition of the role of type covering assumptions in upward inheri- 

tance. 
The discussion in section 6 is more tentative and explores the connection with 

some AI approaches such as circumscription and the specification of exceptions, 
as well as some implications for conceptual modeling methodology. We should 
mention here that one of the topics of further research is making OTLoeon 
executable. 

In section 6.1 we noted that IC inheritance is at once elementary and difficult. 
More in particular, the principle of basic inheritance as stated in theorem 5.4 is a 
direct consequence of the logic of the implication sign, but  the practice of 
constraint specification is fraught with unexpected problems, because IC's do not 
behave as our common sense thinks they should. This made one of us think 
(Wieringa) of the advice he got from his father-in-law when renovating his house: 
"Plumbing is easy, the only thing you have to know is, Water flows downwards." 
Similarly, constraint inheritance is easy, the only thing you have to know is, IC's 
inherit downwards. But somehow, like plumbing, practice is considerably more 
difficult than this principle. 

A p p e n d i x  

ELEMENTARY LATTICE THEORY 

The following is based on chapters 1 and 5 of Birkhoff [2]. A set A with a 
partial order ~< is denoted (A ,  <.). Partially ordered sets are also called posets. 

DEFINITION A.1 

Let (A, ~<) be a poset. 
1. An upper bound of a subset X C A is an a c A with x ~< a for all x c X. The 

supremum (or join or lowest upper bound) of X in A, denoted U (X) ,  is an 
a c A smaller then every upper bound of X. Dual definitions can be given 
for lower bounds and the infimum (or meet or greatest lower bound) I"-1 (X)  
of X. 

2. (A, ~ )  is a join semi-lattice if any two elements ax, a 2 c A  have a 
supremum a 1 U a z c A ,  and it is called a meet semi-lattice if any two 
elements aa, a 2 c A  have an inf imum a I U a 2 c A .  ( A, ~ ) is a lattice if it is 
a join- and meet semilattice. 

3. (A, ~ )  is complete if every subset has a supremum and an inf imum in A. 
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Remarks 
1. The  s u p r e m u m  of  X ___ A does no t  need  to exist, even if A is finite. T a k e  for  

example  A = {a l ,  a2, a3} with a 1 ~<a 2. T h e n  {a  2, a3} has n o  sup remum.  
2. If  the s u p r e m u m  of X _  A exists, it is un ique  (this fol lows f r o m  the 

an t i symmet ry  of  ~<). 
3. Because A G A, every n o n - e m p t y  comple t e  lat t ice has  a top e lement ,  de- 

no ted  T ,  and  a b o t t o m  element ,  d e n o t e d  _1_. 
4. Every  finite lat t ice is comple te .  
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