Skip to main content
Log in

SDL, a stochastic algorithm for learning decision lists with limited complexity

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper deals with learning decision lists from examples. In real world problems, data are often noisy and imperfectly described. It is commonly acknowledged that in such cases, consistent but inevitably complex classification procedures usually cause overfitting: results are perfect on the learning set but worse on new examples. Therefore, one searches for less complex procedures which are almost consistent or, in other words, for a good compromise between complexity and goodness-of-fit. But such a requirement generally involves NP-completeness. In a way, CN2 provides a greedy approach to the problem. In this paper, we propose to search the solution space more extensively, using a stochastic procedure, an association of simulated annealing (SA) and simple tabu search (TS) in two distinct phases. In the first phase, we use SA to diversify the search. In the second phase, TS intensifies the search. We compare CART, CN2, and our method using natural and artificial domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H.L. Aarts and P.J.M. van Laarhoven, Statistical cooling: A general approach to combinatorial optimization problems, Philips J. Res. 40 (1985) 193.

    Google Scholar 

  2. P. Bonelli, A. Parodi, S. Sen and S.W. Wilson, NEWBOOLE: A fast GBML system,Proc. Int. Conf. on Machine Learning, Austin, TX (1990) p. 153.

  3. E. Bonomi and J.L. Lutton, TheN-city travelling salesman problem: Statistical mechanics and the metropolis algorithm, SIAM Rev. 26 (1984) 551.

    Google Scholar 

  4. A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth, Occam's razor, Information Processing Lett. 24 (1987) 377.

    Google Scholar 

  5. L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone,Classification and Regression Trees (Wadsworth, 1984).

  6. P. Clark and T. Niblett, The CN2 induction algorithm, Machine Learning 3 (1989) 261.

    Google Scholar 

  7. P.R. Cohen and E.A. Feigenbaum (eds.),The Artificial Intelligence Handbook, Vol. 3 (Pitman, 1982) chap. 14.

  8. K.A. De Jong and W.M. Spears, Learning concept classification rules using genetic algorithms,Proc. Int. Joint Conf. on Artificial Intelligence, Sydney (1991) p. 651.

  9. O. Gascuel and G. Caraux, Distribution-free performance bounds with the resubstitution error estimate, Pattern Recognition Lett. 13 (1992) 757.

    Google Scholar 

  10. F. Glover, Tabu search — Part I, ORSA J. 3, v. 1 (1989) 190.

    Google Scholar 

  11. F. Glover, Tabu search — Part II, ORSA J. 1, v. 2 (1990) 4.

    Google Scholar 

  12. J.J. Grefenstette, C.L. Ramsey and A.C. Schultz, Learning sequential decision rules using simulation models and competition, Machine Learning 5 (1990) 355.

    Google Scholar 

  13. A. Hertz and D. de Werra, The tabu search metaheuristic: How we used it, Ann. Math. and AI 1 (1990) 111.

    Google Scholar 

  14. M.D. Huang, F. Romeo and A. Sangiovanni-Vincentelli, An efficient general cooling schedule for simulated annealing,Proc. IEEE Int. Conf. on CAD, Santa Clara (1986) p. 381.

  15. L. Hyafil and R. Rivest, Constructing optimal binary decision trees is NP-complete, Information Processing Lett. 5 (1976) 15.

    Google Scholar 

  16. J.D. Kelly, Jr. and L. Davis, A hybrid genetic algorithm for classification,Proc. Int. Joint Conf. on Artificial Intelligence, Sydney (1991) p. 645.

  17. S. Kirkpatrik, C.D. Gelatt, Jr. and M.P. Vecchi, Optimization by simulated annealing, Science 4598, v. 220 (1983) 671.

    Google Scholar 

  18. E.M. Kleinberg, Stochastic discrimination, Ann. Math. and AI 1 (1990) 207.

    Google Scholar 

  19. P.J.M. van Laarhoven and E.H.L. Aarts,Simulated Annealing: Theory and Applications (Reidel, 1987).

  20. M. Lundy, Applications of the annealing algorithm to combinatorial problems in statistics, Biometrika 72 (1985) 191.

    Google Scholar 

  21. M. Lundy and A. Mees, Convergence of an annealing algorithm, Math. Program. 34 (1986) 111.

    Google Scholar 

  22. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087.

    Google Scholar 

  23. A. Parodi and P. Bonelli, Un système de classifieurs efficace et sa comparaison avec deux methodes representatives d'apprentissage automatique dans trois domaines medicaux, in:Actes Journées Françaises d'Apprentissage, Sète (1991).

  24. J. Rissanen, Modeling by shortest data description, Automatica 14 (1978) 465.

    Google Scholar 

  25. R. Rivest, Learning decision lists, Machine Learning 2 (1987) 229.

    Google Scholar 

  26. L.G. Valiant, A theory of the learnable, Commun. ACM 27 (1984) 1134.

    Google Scholar 

  27. V.N. Vapnik,Estimation of Dependencies Based on Empirical Data (Springer, 1974) chap. 6.

  28. S.W. Wilson, Classifier systems and the animat problem, Machine Learning 2 (1987) 199.

    Google Scholar 

  29. K. Yamanishi, A learning criterion for stochastic rules, Machine Learning 9 (1992) 165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Departamento de Ciências de Computação, UECE, 60715 Fortaleza CE, Brazil, supported in part by CAPES under grant number 3563/89.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho Gomes, F., Gascuel, O. SDL, a stochastic algorithm for learning decision lists with limited complexity. Ann Math Artif Intell 10, 281–302 (1994). https://doi.org/10.1007/BF01530954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01530954

Keywords

Navigation