Skip to main content
Log in

The modelling of nucleophilic and electrophilic additions to organometallic complexes using molecular graphics techniques

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A new formalism has been developed in order to evaluate intermolecular interaction energies for inorganic and organometallic complexes in the framework of the extended Hückel method. In order to provide the shortest possible response time on an interactive computer graphics facility, this model should require the minimum amount of computer time, which explains why approximate procedures are used to evaluate electrostatic, charge transfer and exchange repulsion components. When applying this model to typical examples of electrophilic addition reactions to organometallic complexes, it is found that it is essential to take account of charge transfer interactions, the electrostatic component alone being not sufficient, even qualitatively, for a proper description of the reaction mechanism. The results, presented as color-coded dot molecular surfaces, show a very good agreement with experiment as to the site of attack, namely (i) on metal for the electrophilic attack on Fe(cp)2, Fe(CO)5 and X(cp)(CO)2, X=Co, Rh; (ii) on the cp ligand for the nucleophilic attack on Co(cp)2 + and Rh(cp)2 +; (iii) on bz for the nucleophilic attack on Fe(cp)(bz)+. Finally, modellizations of the nucleophilic attack on a coordinated olefin and of the relation between structure and acidic properties of zeolites are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parshall, G.W. Homogeneous Catalysis, Wiley, New York, NY, 1980, p. 27.

    Google Scholar 

  2. Davies, S.G., Green, M.L.H. and Mingos, M.P., Tetrahedron, 34 (1978) 3047–3077.

    Google Scholar 

  3. Bäckvall, J.E., Acc. Chem. Res., 16 (1983) 335–342.

    Google Scholar 

  4. Libit, L., and Hoffmann, R., J. Am. Chem. Soc., 96 (1974) 1379–1383.

    Google Scholar 

  5. Fukui, K. and Inagaki, S., J. Am. Chem. Soc., 97 (1975) 4445–4452.

    Google Scholar 

  6. Imamura, A. and Hirano, T., J. Am. Chem. Soc., 97 (1975) 4192–4198.

    Google Scholar 

  7. Fukui, K. and Fujimoto, H., Bull. Chem. Soc. Jpn., 41 (1968) 1989–1997.

    Google Scholar 

  8. Langlet, J., Claverie, P., Caron, F. and Boeuve, J.C., Int. J. Quant. Chem., 20 (1981) 299–338.

    Google Scholar 

  9. Moriishi, H., Kikushi, O., Suzuki, K. and Klopman, G., Theoret. Chim. Acta, 64 (1984) 319–338.

    Google Scholar 

  10. Nakamura, S. and Dedieu, A., Theoret. Chim. Acta, 61 (1982) 587–595.

    Google Scholar 

  11. Bäckvall, J.E., Björkman, E.E., Petterson, L. and Siegbahn, P., J. Am. Chem. Soc., 107 (1985) 7265–7267.

    Google Scholar 

  12. Sakaki, S., Moruta, K. and Ohkubo, K., Inorg. Chem., 26 (1987) 2499–2505.

    Google Scholar 

  13. Hoffmann, R., J. Chem. Phys., 39 (1963) 1397–1412.

    Google Scholar 

  14. Connolly, M.L., Science, 221 (1983) 709–713.

    PubMed  Google Scholar 

  15. Scrocco, E. and Tomasi, J., Top. Curr. Chem., 42 (1973) 95–170.

    Google Scholar 

  16. Pople, J.A., Santry, D.P. and Segal, G.A., J. Chem. Phys., 43 (1965) S129–S135.

    Google Scholar 

  17. Löwdin, P.O., J. Chem. Phys., 18 (1950) 365–375.

    Google Scholar 

  18. Mulliken, R.S., J. Chim. Phys., 46 (1949) 497–542.

    Google Scholar 

  19. Carbo, R. and Martin, M., Int. J. Quant. Chem., 9 (1975) 193–214.

    Google Scholar 

  20. Daul, C. and Weber, J., Chem. Phys. Lett., to be submitted.

  21. Brown, D.A., Fitzpatrick, N.J. and McGinn, M.A., J. Organomet. Chem., 293 (1985) 235–248.

    Google Scholar 

  22. Anderson, A.B., J. Chem. Phys., 62 (1975) 1187–1188.

    Google Scholar 

  23. Howell, J., Rossi, A., Wallace, D., Haraki, K. and Hoffmann, R., QCPE Bull., 11 (1979) 344.

    Google Scholar 

  24. Weber, J. and Roch, M., J. Mol. Graph. 4 (1986) 145–148.

    Google Scholar 

  25. Vaney, M.C., Surcouf, E., Morize, I., Cherfils, I. and Mornon, J.P., J. Mol. Graph. 3 (1985) 123–124.

    Google Scholar 

  26. Weber, J. and Goursot, A., unpublished results.

  27. Curphey, T.J., Santer, J.O., Rosenblum, M. and Richards, J.H., J. Am. Chem. Soc., 82 (1960) 5249–5250.

    Google Scholar 

  28. Pavlik, I. and Subrt, J., Coll. Czech. Chem. Comm., 32 (1967) 76–78.

    Google Scholar 

  29. Foster, M.S. and Beauchamp, J.L., J. Am. Chem. Soc., 97 (1975) 4814–4817.

    Google Scholar 

  30. Lentzner, H.L. and Watts, W.E., J. Chem. Soc., Chem. Commun., (1970) 26–27.

  31. Lauher, J.W. and Hoffmann, R., J. Am. Chem. Soc., 98 (1976) 1729–1742.

    Google Scholar 

  32. Davison, A., MacFarlane, W., Pratt, L. and Wilkinson, G., J. Chem. Soc., (1962) 3653–3666.

  33. Foster, M.S. and Beauchamp, J.L., J. Am. Chem. Soc., 97 (1975) 4808–4814.

    Google Scholar 

  34. Werner, H., Angew. Chem. Int. Ed., 22 (1983) 927–949.

    Google Scholar 

  35. Cook, D.J., Dawes, J.L. and Kemmitt, R.W.D., J. Chem. Soc. A, (1967) 1547–1551.

  36. Dawes, J.L. and Kemmitt, R.W.D., J. Chem. Soc. A, (1968) 1072–1073.

  37. Green, M.L.H., Pratt, L. and Wilkinson, G., J. Chem. Soc., (1959) 3753–3767.

  38. Khand, I.U., Pauson, P. L. and Watts, W.E., J. Chem. Soc. C, (1968) 2257–2260.

  39. Sakaki, S., Kato, H., Kanai, H. and Tarama, K., Bull. Chem. Soc. Jpn., 47 (1974) 377–383.

    Google Scholar 

  40. Hamilton, W.C., Klandermann, K.A. and Spratley, R., Acta Crystallogr., Sect. A, 25 (1969) S172–S173.

    Google Scholar 

  41. Ramdas, S., Thomas, J.M., Betteridge, P.W., Cheetham, A.K. and Davies, E.K., Angew. Chem. Int. Ed., 23 (1984) 671–679.

    Google Scholar 

  42. Barthomeuf, D., J. Phys. Chem., 83 (1979) 249–256.

    Google Scholar 

  43. Goursot, A., Fajula, F., Daul, C. and Weber, J., J. Phys. Chem., 92 (1988) 4456.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, J., Fluekiger, P., Morgantini, PY. et al. The modelling of nucleophilic and electrophilic additions to organometallic complexes using molecular graphics techniques. J Computer-Aided Mol Des 2, 235–253 (1988). https://doi.org/10.1007/BF01531997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01531997

Key words

Navigation