Skip to main content
Log in

A molecular graphics study exploring a putative ligand binding site of theβ-adrenoceptor

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The recent elucidation of the primary structure of the cell membrane-boundβ-adrenoceptor has prompted us to explore putative ligand binding sites on this physiologically important receptor. By minimizing the energies of the ‘prototype’ ligand propranolol, (part of) the receptor and the proposed ligand-receptor complex with the aid of force field and quantum chemical calculations, we identified amino acid residue Trp313 as a highly probable candidate for interaction with the aromatic moiety of propranolol. The charge distribution on the indole nucleus of anotherβ-blocker, pindolol, with higher affinity for theβ-adrenoceptor, enables an even stronger interaction with the tryptophan residue. The carboxylic amino acid residue Glu306, located near the extracellular space of the cell membrane, interacts favorably with the positively charged nitrogen atom in the aliphatic side chain of the ligands. Finally, this putative model is discussed in the light of recent findings in mutagenesis studies, and compared to other ideas with respect to ligand-receptor interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lefkowitz, R.J., Stadel, J.M. and Caron, M.G., Annu. Rev. Biochem., 52 (1983) 159–186.

    Google Scholar 

  2. Lands, A.M., Arnold, A., McAuliff, J.P., Luduena, F.P. and Brown Jr., T.G., Nature, 214 (1967) 597–598.

    Google Scholar 

  3. Lefkowitz, R.J., Caron, M.G., Michel, T. and Stadel, J.M., Fed. Proc., 41 (1982) 2664–2670.

    Google Scholar 

  4. Ijzerman, A.P., Bultsma, T., Timmerman, H. and Zaagsma, J. Naunyn-Schmied. Arch. Pharmacol., 327 (1984) 293–298.

    Google Scholar 

  5. Ijzerman, A.P., Dorlas, R., Aué, G.H.J., Bultsma, T. and Timmerman, H., Biochem. Pharmacol., 34 (1985) 2883–2890.

    Google Scholar 

  6. Cherksey, B.D., Murphy, R.B. and Zadunaisky, J.A., Biochemistry, 20 (1981) 4278–4283.

    Google Scholar 

  7. Ijzerman, A.P., Aué, G.H.J., Bultsma, T., Linschoten, M.R. and Timmerman, H., J. Med. Chem., 28 (1985) 1328–1334.

    Google Scholar 

  8. Linschoten, M.R., Bultsma, T., Ijzerman, A.P. and Timmerman, H., J. Med. Chem., 29 (1986) 278–286.

    Google Scholar 

  9. Kobilka, B.K., Dixon, R.A.F., Frielle, T., Dohlman, H.G., Bolanowski, M.A., Sigal, I.S., Yang-Feng, T.L., Francke, U., Caron, M.G. and Lefkowitz, R.J., Proc. Natl. Acad. Sci. U.S.A., 84 (1987) 46–50.

    Google Scholar 

  10. Dixon, R.A.F., Kobilka, B.K., Strader, D.J., Benovic, J.L., Dohlman, H.G., Frielle, T., Bolanowski, M.A., Bennett, C.D., Rands, E., Diehl, R.E., Mumford, R.A., Slater, E.E., Sigal, I.S., Caron, M.G., Lefkowitz, R.J. and Strader, C.D., Nature 321 (1986) 75–79.

    Google Scholar 

  11. Yarden, Y., Rodriguez, H., Wong, S. K.-F., Brandt, D.R., May, D.C., Burnier, J., Harkins, R.N., Chen, E.Y., Ramachandran, J., Ullrich, A. and Ross, E.M., Proc. Natl. Acad. Sci. U.S.A., 83 (1986) 6795–6799.

    Google Scholar 

  12. Dohlman, H.G., Caron, M.G. and Lefkowitz, R.J., Biochemistry, 26 (1987) 2657–2664.

    Google Scholar 

  13. Dixon, R.A.F., Sigal, I.S., Rands, E., Register, R.B., Candelore, M.R., Blake, A.D. and Strader, C.D., Nature, 326 (1987) 73–77.

    Google Scholar 

  14. CHEM-X: Molecular modelling system, Chemical Design Ltd., Oxford, U.K.

  15. QCPE-program No. 455, MOPAC: A General Molecular Orbital Package, Chemistry Department, Indiana University, Bloomington, IN, U.S.A.

  16. Allinger, N.L. and Yuh, Y.H., QCPE-program No. 395, MM2.

  17. Allinger, N.L. and Yuh, Y.H., QCPE-program Nos. 395,400, MM2P.

  18. Del Re, G., Gavuzzo, E., Giglio, E., Lelj, F., Mazza, F. and Zappia, V., Acta Crystallogr., Sect. B33 (1977) 3289–3296.

    Google Scholar 

  19. Easson, L.H. and Stedman, E., Biochem. J., 27 (1933) 1257–1266.

    Google Scholar 

  20. Albert, A., Selective Toxicity and Related Topics, 4th ed., Methuen & Co Ltd., London, 1968, pp. 182–187.

    Google Scholar 

  21. Bilezikian, J.P., Dornfeld, A.M. and Gammon, D.E., Biochem. Pharmacol., 27 (1978) 1455–1461.

    Google Scholar 

  22. Andrews, P.R., Craik, D.J. and Martin, J.L., J. Med. Chem., 27 (1984) 1648–1657.

    Google Scholar 

  23. Oseroff, A.R. and Callender, R.H., Biochemistry, 13 (1974) 4243–4248.

    Google Scholar 

  24. Applebury, M.L. and Hargrave, P.A., Vision Res., 26 (1987) 1881–1895.

    Google Scholar 

  25. Strader, C.D., Sigal, I.S., Register, R.B., Candelore, M.R., Rands, E. and Dixon, R.A.F., Proc. Natl. Acad. Sci. U.S.A. 84 (1987) 4384–4388.

    Google Scholar 

  26. Hollenberg, M.D., Trends Pharmacol. Sci., 8 (1987) 197–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ijzerman, A.P., van Vlijmen, H.W.T. A molecular graphics study exploring a putative ligand binding site of theβ-adrenoceptor. J Computer-Aided Mol Des 2, 43–53 (1988). https://doi.org/10.1007/BF01532052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01532052

Key words

Navigation