Skip to main content
Log in

On the geodesic voronoi diagram of point sites in a simple polygon

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a simple polygon withn sides in the plane and a set ofk point “sites” in its interior or on the boundary, compute the Voronoi diagram of the set of sites using the internal “geodesic” distance inside the polygon as the metric. We describe anO((n + k) log(n + k) logn)-time algorithm for solving this problem and sketch a fasterO((n + k) log(n + k)) algorithm for the case when the set of sites includes all reflex vertices of the polygon in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Aurenhammer, Power diagrams: properties, algorithms and applications,SIAM J. Comput.,16 (1987), 78–96.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Asano and T. Asano, Voronoi diagram for points in a simple polygon, manuscript.

  3. F. Aurenhammer and H. Edelsbrunner, An optimal algorithm for constructing the weighted Voronoi diagram in the plane,Pattern Recognition,17 (1984), 251–257.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Aronov, S. Fortune, and G. Wilfong, The furthest-site geodesic Voronoi diagram,Proc 4th ACM Symp. on Computational Geometry, 1988, pp. 229–240.

  5. A. Baltsan and M. Sharir, On shortest paths between two convex polyhedra,J. Assoc. Comput. Mach.,35 (1988), 267–287.

    MATH  MathSciNet  Google Scholar 

  6. L. P. Chew and R. L. Drysdale, III, Voronoi diagrams based on convex distance functions,Proc. ACM Symp. on Computational Geometry, 1985, pp. 235–244.

  7. B. Chazelle, A theorem on polygon cutting with applications,Proc. 23rd Symp. on Theory of Computing, 1982, pp. 339–349.

  8. L. P. Chew, Constrained Delaunay triangulations,Algorithmica, this issue, pp. 97–108.

  9. H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements,Discrete Comput. Geom.,1 (1986), 25–44.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. J. Fortune, A sweepline algorithm for Voronoi diagrams,Algorithmica,2 (1987), 153–174.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside a triangulated simple polygon,Algorithmica,2 (1987), 209–233.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple polygon,Inform. Process. Lett,7 (1978), 175–179.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees,Proc. 19th IEEE Symp. on Foundations of Computer Science, 1978, pp. 8–21.

  14. H. Imai, M. Iri, and K. Murota, Voronoi diagram in the Laguerre geometry and its applications,SIAM J. Comput.,14 (1985), 93–105.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. G. Kirkpatrick, Efficient computation of continuous skeletons,Proc. 20th IEEE Symp. on Foundations of Computer Science, 1979, pp. 18–27.

  16. D. T. Lee, Proximity and reachability in the plane, Ph.D. dissertation, Tech. Report No. R-831, Coordinated Science Laboratory, University of Illinois at Urbana, 1978.

  17. D. T. Lee, Two-dimensional Voronoi diagrams in theL p -metric,J. Assoc. Comput. Mach.,27 (1980), 604–618.

    MATH  MathSciNet  Google Scholar 

  18. W. Lenhart, R. Pollack, J. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint, S. Whitesides, and C. K. Yap, Computing the link center of a simple polygon,Proc. 3rd ACM Symp. on Computational Geometry, June 1987, pp. 1–10.Discrete Comput. Geom.,3 (1988), 281–293.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. T. Lee and A. K. Lin, Generalized Delaunay triangulations for planar graphs,Discrete Comput. Geom.,1 (1986), 201–217.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear barriers,Networks,14 (1984), 393–410.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Leven and M. Sharir, Intersection and proximity problems and Voronoi diagrams, inAdvances in Robotics, Vol. 1, J. T. Schwartz and C. K. Yap, eds., Erlbaum, Hillsdale, NJ, 1987, pp. 187–228.

    Google Scholar 

  22. D. T. Lee and C. K. Wong, Voronoi diagrams inL 1-(L -)metrics with 2-dimensional applications,SIAM J. Comput.,9 (1980), 200–211.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Ó'Dúnlaing, M. Sharir, and C. K. Yap, Generalized Voronoi diagrams for moving a ladder: I. Topological analysis,Comm. Pure Appl. Math.,39 (1986), 423–483.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Ó'Dúnlaing, M. Sharir, and C. K. Yap, Generalized Voronoi diagrams for moving a ladder: II. Efficient construction of the diagram,Algorithmica,2 (1987), 27–59.

    Article  MATH  MathSciNet  Google Scholar 

  25. F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  26. R. Pollack, M. Sharir, and G. Rote, Computing the geodesic center of a simple polygon,Discrete Comput. Geom., to appear.

  27. S. Suri, Computing the link diameter of a simple polygon, Tech. Report JHU/EECS-86/09, Dept. of Elec. Eng. and Comp. Sci., Johns Hopkins University, 1986.

  28. S. Suri, Computing the geodesic diameter of a simple polygon, Tech. Report JHU/EECS-86/08, Dept. of Elec. Eng. and Comp. Sci., Johns Hopkins University, 1986.

  29. S. Suri, The all-geodesic-furthest neighbor problem for simple polygons,Proc. 3rd ACM Symp. on Computational Geometry, June 1987, pp. 64–75.

  30. M. I. Shamos and D. Hoey, Closest-point problems,Proc. 16th IEEE Symp. on Foundations of Computer Science, 1975, pp. 151–162.

  31. N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees,Comm. ACM,29 (1986), 669–679.

    Article  MathSciNet  Google Scholar 

  32. G. Toussaint, An optimal algorithm for computing the relative convex hull of a set of points in a polygon,Signal Processing III:Theories and Applications, Proc. EUSIPCO-86, North-Holland, Amsterdam, 1986, pp. 853–856.

    Google Scholar 

  33. R. E. Tarjan and C. Van Wyk, AnO(n log logn)-time algorithm for triangulating a simple polygon,SIAM J. Comput.,17 (1988), 143–177.

    Article  MATH  MathSciNet  Google Scholar 

  34. C. Wang and L. Schubert, An optimal algorithm for constructing the Delaunay triangulation of a set of line segments,Proc. 3rd ACM Symp. on Computational Geometry, June 1987, pp. 223–232.

  35. C. K. Yap, AnO(n logn) algorithm for the Voronoi diagram of a set of simple curve segments,Discrete Comput. Geom.,2 (1987), 365–394.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Chee-Keng Yap.

Work on this paper was performed while the author held an AT&T Bell Laboratories Ph.D. Scholarship at New York University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronov, B. On the geodesic voronoi diagram of point sites in a simple polygon. Algorithmica 4, 109–140 (1989). https://doi.org/10.1007/BF01553882

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01553882

Key words

Navigation