Skip to main content
Log in

A dynamic fixed windowing problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a point set in the plane and a fixed planar region (window) a window query consists of enumerating the points in a translate of the region. A recently presented result demonstrates that there is astatic data structure, of optimal size, that solves window queries for convex regions in optimal time. We give a data structure, of optimal size, that not only supports window queries in optimal time for, possibly nonconvex, polygonal windows, but also allows updating of the point set in optimal time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Atkinson, J.-R. Sack, N. Santoro, and Th. Strothotte. Min-max heaps and generalized priority queues.Communications of the ACM,29:996–1000, 1986.

    Article  MATH  Google Scholar 

  2. R. Bayer. Symmetric binary B-trees: data structure and maintenance algorithms.Acta Informatica,1:290–306, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. L. Bentley and J. B. Saxe. Decomposable searching problems I: static-to-dynamic transformation.Journal of Algorithms,1:301–358, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Chazelle and H. Edelsbrunner. Optimal solutions for a class of point retrieval problems. InProceedings of the 12th International Colloquium on Automata, Languages, and Programming, pp. 80–89, 1985.

  5. R. H. Güiting. Dynamic C-oriented polygon intersection searching.Information and Control,63:143–163, 1984.

    Article  MathSciNet  Google Scholar 

  6. E. M. McCreight. Priority search trees.SIAM Journal on Computing,14:257–276, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. J. Olivié. A new class of balanced binary search trees.RAIRO Informatique théoretique,16:51–71, 1982.

    MATH  Google Scholar 

  8. M. H. Overmars.The Design of Dynamic Data Structures. Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  9. M. H. Overmars and J. van Leeuwen. Two general methods for dynamizing decomposable searching problems.Information Processing Letters,12:168–173, 1981.

    Article  MATH  Google Scholar 

  10. R. E. Tarjan. Updating balanced search trees inO(1) rotations.Information Processing Letters,16:253–257, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. van Leeuwen and D. Wood. Dynamization of decomposable searching problems.Information Processing Letters,10:51–56, 1980.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Kurt Mehlhorn.

This work was partially supported by Grant No. O164/4-2 from the Deutsche Forschungsgemein-schaft and partially under a Natural Sciences and Engineering Research Council of Canada Grant No. A-5692.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, R., Nurmi, O., Ottmann, T. et al. A dynamic fixed windowing problem. Algorithmica 4, 535–550 (1989). https://doi.org/10.1007/BF01553907

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01553907

Key words

Navigation