Skip to main content
Log in

Quadratic duality over convex cone domains

  • Short Communication
  • Published:
Mathematical Programming Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R.A. Abrams and A. Ben-Israel, “A duality theorem for complex quadratic programming”,Journal of Optimization Theory and Applications 4 (1969) 244–252.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ben-Israel, “Linear equations and inequalities on finite dimensional, real or complex, vector spaces: a unified theory”,Journal of Mathematical Analysis and Applications 27 (1969) 367–389.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Ben-Israel, A. Charnes and K.O. Kortanek, “Asymptotic duality over closed convex sets”,Journal of Mathematical Analysis and Applications 35 (1971) 677–691.

    Article  MathSciNet  MATH  Google Scholar 

  4. W.S. Dorn, “Duality in quadratic programming”,Quarterly of Applied Mathematics 18 (1960) 155–162.

    Article  MathSciNet  MATH  Google Scholar 

  5. Monique Guignard, “Generalized Kuhn—Tucker conditions for mathematic programming problems in a Banach space”,SIAM Journal on Control 7 (1969) 232–241.

    Article  MathSciNet  MATH  Google Scholar 

  6. H.W. Kuhn and A.W. Tucker, “Non-linear programming”, in:Second Berkeley symposium proceedings on mathematical statistics and probability (University of California Press, Berkeley, Calif., 1950) pp. 481–492.

    Google Scholar 

  7. Hans Kunzi and Wilhelm Krelle,Nonlinear programming (Blaisdell, Waltham, Mass., 1966).

    Google Scholar 

  8. D.B. Luenberger,Optimization by vector space (Wiley, New York, 1969).

    MATH  Google Scholar 

  9. O.L. Mangasarian,Nonlinear programming (McGraw-Hill, New York, 1969).

    MATH  Google Scholar 

  10. K. Ritter, “Duality for nonlinear programming in a Banach space”,SIAM Journal on Applied Mathematics 15 (1967) 294–302.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Slater, “Lagrange multipliers revisited: a contribution to nonlinear programming”, Rand Corporation Rept RM-676, Santa Monica, California, (1951).

  12. V.A. Sposito,Linear and nonlinear programming (Iowa State University Press, Ames, Iowa, 1975).

    MATH  Google Scholar 

  13. V.A. Sposito, “Modified regularity conditions for nonlinear programming problems over mixed cone domains”,Mathematical Programming 6 (1974) 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  14. V.A. Sposito and H.T. David, “Saddlepoint optimality criteria of nonlinear programming problems over cones without differentiability”,SIAM Journal on Applied Mathematics 20 (1971) 698–702.

    Article  MathSciNet  MATH  Google Scholar 

  15. V.A. Sposito and H.T. David, “A note on Farkas Lemmas over cone domains”,SIAM Journal on Applied Mathematics 22 (1972) 356–358.

    Article  MathSciNet  MATH  Google Scholar 

  16. P.P. Varaiya, “Nonlinear programming in a Banach space”,SIAM Journal on Applied Mathematics 15 (1967) 284–293.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sposito, V.A. Quadratic duality over convex cone domains. Mathematical Programming 10, 277–283 (1976). https://doi.org/10.1007/BF01580673

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01580673

Keywords