Skip to main content
Log in

On box totally dual integral polyhedra

  • Published:
Mathematical Programming Submit manuscript

Abstract

Edmonds and Giles introduced the class of box totally dual integral polyhedra as a generalization of submodular flow polyhedra. In this paper a geometric characterization of these polyhedra is given. This geometric result is used to show that each TDI defining system for a box TDI polyhedron is in fact a box TDI system, that the class of box TDI polyhedra is in co-NP and is closed under taking projections and dominants, that the class of box perfect graphs is in co-NP, and a result of Edmonds and Giles which is related to the facets of box TDI polyhdera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bachem and M. Grötschel, “New aspects of polyhedral theory“, in: B. Korte, ed.,Modern applied mathematics — Optimization and operations research (North-Holland, Amsterdam, 1982) 51–106.

    Google Scholar 

  2. E. Balas and W.R. Pulleyblank, “The perfectly matchable subgraph polytope of a bipartite graph“,Networks 13 (1983) 495–516.

    Google Scholar 

  3. C. Berge,Graphs and hypergraphs (North-Holland, Amsterdam, 1973).

    Google Scholar 

  4. C. Berge and V. Chvátal,Topics on perfect graphs (North-Holland, Amsterdam, 1984).

    Google Scholar 

  5. K. Cameron, “Polyhedral and algorithmic ramifications of antichains”, Ph.D. Thesis, University of Waterloo, 1982.

  6. R. Chandrasekaran, “Polynomial algorithms for totally dual integral systems and extensions“,Annals of Discrete Mathematics 11 (1981) 39–51.

    Google Scholar 

  7. W. Cook, L. Lovász and A. Schrijver, “A polynomial-time test for total dual integrality in fixed dimension“,Mathematical Programming Study 22 (1984) 64–69.

    Google Scholar 

  8. W.H. Cunningham, “An unbounded matroid intersection polyhedron“, Linear Algebra and its Appliications 16 (1977) 209–215.

    Google Scholar 

  9. W.H. Cunningham and J. Green-Krotki, to appear.

  10. J. Edmonds, “Submodular functions, matroids, and certain polyhedra“, in: R. Guy, H. Hanani, N. Sauer and J. Schonheim, eds.,Combinatorial structures and their applications (Gordon and Breach, New York, 1970) 69–87.

    Google Scholar 

  11. J. Edmonds and R. Giles, “A min-max relation for submodular functions on graphs“,Annals of Discrete Mathematics 1 (1977) 185–204.

    Google Scholar 

  12. J. Edmonds and R. Giles, “Box total dual integrality”, unpublished paper, 1980.

  13. J. Edmonds and R. Giles, “Total dual integrality of linear inequality systems“, in: W.R. Pulleyblank, ed.,Progress in combinatorial optimization (Academic Press, Toronto, 1984) 117–129.

    Google Scholar 

  14. A. Frank, “Kernel systems of directed graphs“,Acta Scientiarum Mathematicarum (Szeged) 41 (1979) 63–76.

    Google Scholar 

  15. A. Frank, “Generalized polymatroids”, Report 81206-OR, Institut für Ökonometrie und Operations Research, Bonn, F.R. Germany, 1981.

  16. A. Frank and E. Tardos, “Generalized polymatroids and submodular flows”, in preparation.

  17. D.R. Fulkerson, “Blocking and anti-blocking pairs of polyhedra“,Mathematical Programming 1 (1971) 168–194.

    Google Scholar 

  18. M.R. Garey and D.S. Johnson,Computers and intractability: A Guide to the theory of NP-completeness (W.H. Freeman and Company, San Francisco, 1979).

    Google Scholar 

  19. J. von zur Gathen and M. Sieveking, “A bound on solutions of linear integer equalities and inequalities“,Proceedings of the American Mathematical Society 72 (1978) 155–158.

    Google Scholar 

  20. F.R. Giles and W.R. Pulleyblank, “Total dual integrality and integer polyhedra“, Linear Algebra and its Applications 25 (1979) 191–196.

    Google Scholar 

  21. C. Greene and D. Kleitman, “The structure of Spernerk-families“,Journal of Combinatorial Theory Series A 20 (1976) 41–68.

    Google Scholar 

  22. H. Gröflin and A.J. Hoffman, “Lattice polyhedra II: Generalization, constructions and examples“,Annals of Discrete Mathematics 15 (1982) 189–203.

    Google Scholar 

  23. M. Grötschel, L. Lovász and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization“,Combinatorica 1 (1981) 169–197.

    Google Scholar 

  24. M. Grötschel, L. Lovász and A. Schrijver, “Polynomial algorithms for perfect graphs“, in: C. Berge and V. Chvátal, eds.,Topics on perfect graphs (North-Holland, Amsterdam, 1984) 325–356.

    Google Scholar 

  25. M. Grötschel, L. Lovász and A. Schrijver, “Relaxations of vertex packing”, Report 84341-OR, Institut für Ökonometrie und Operations Research, Bonn, W. Germany, 1984.

  26. M. Grötschel, L. Lovász and A. Schrijver,The ellipsoid method and combinatorial optimization (Springer-Verlag), to appear.

  27. A.J. Hoffman, “A generalization of max flow-min cut“,Mathematical Programming 6 (1974) 352–359.

    Google Scholar 

  28. A.J. Hoffman and D.E. Schwartz, “On lattice polyhedra“, in: A. Hajnal and V.T. Sós, eds.,Combinatorics (North-Holland, Amsterdam, 1978) 593–598.

    Google Scholar 

  29. L.G. Khachiyan, “A polynomial algorithm in linear programming“,Soviet Mathematics Doklady 20 (1979) 191–194.

    Google Scholar 

  30. L. Lovász, “Normal hypergraphs and the perfect graph conjecture“,Discrete Mathematics 2 (1972) 253–267.

    Google Scholar 

  31. L. Lovász, “Perfect graphs“, in: L.W. Beineke and R.J. Wilson, eds.,Selected topics in graph theory 2 (Academic Press, London, 1983) 55–87.

    Google Scholar 

  32. C. McDiarmid, “Blocking, antiblocking, and pairs of matroids and polymatroids“,Journal of Combinatorial Theory Series B 25 (1978) 313–325.

    Google Scholar 

  33. W.R. Pulleyblank, “Polyhedral combinatorics“, in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming—The state of the art (Springer-Verlag, Heidelberg, 1983) 312–345.

    Google Scholar 

  34. R.T. Rockafeller,Convex analysis (Princeton University Press, Princeton, 1970).

    Google Scholar 

  35. A. Schrijver, “On total dual integrality“,Linear Algebra and its Applications 38 (1981) 27–32.

    Google Scholar 

  36. A. Schrijver, “Proving total dual integrality with cross-free families—a general framework“,Mathematical Programming 29 (1984) 15–27.

    Google Scholar 

  37. A. Schrijver, “Total dual integrality from directed graphs, crossing families, and sub- and supermodular functions“, in: W.R. Pulleyblank, ed.,Progress in combinatorial optimization (Academic Press, Toronto, 1984) 315–361.

    Google Scholar 

  38. A. Schrijver,Theory of linear and integer programming (Wiley) to appear.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the Alexander von Humboldt-Stiftung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, W. On box totally dual integral polyhedra. Mathematical Programming 34, 48–61 (1986). https://doi.org/10.1007/BF01582162

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01582162

Key words

Navigation