Skip to main content
Log in

Optimality conditions in mathematical programming and composite optimization

  • Published:
Mathematical Programming Submit manuscript

Abstract

New second order optimality conditions for mathematical programming problems and for the minimization of composite functions are presented. They are derived from a general second order Fermat's rule for the minimization of a function over an arbitrary subset of a Banach space. The necessary conditions are more accurate than the recent results of Kawasaki (1988) and Cominetti (1989); but, more importantly, in the finite dimensional case they are twinned with sufficient conditions which differ by the replacement of an inequality by a strict inequality. We point out the equivalence of the mathematical programming problem with the problem of minimizing a composite function. Our conditions are especially important when one deals with functional constraints. When the cone defining the constraints is polyhedral we recover the classical conditions of Ben-Tal—Zowe (1982) and Cominetti (1990).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Auslender, “Stabilité en programmation non différentiable, dérivée directionnelle seconde inférieure,”C.R. Académie des Sciences Série I, 293 (1981) 301–304.

    Google Scholar 

  2. A. Auslender, “Stability in mathematical programming with nondifferentiable data,”SIAM Journal Control and Optimization 22 (1984) 239–254.

    Google Scholar 

  3. A. Ben-Tal, “Second-order and related extremality conditions in nonlinear programming,”Journal Optimization Theory and Applications 31 (1980) 143–145.

    Google Scholar 

  4. A. Ben-Tal and J. Zowe, “A unified theory of first and second order conditions for extremum problems in topological vector spaces,”Mathematical Programming Study 19 (1982) 39–76.

    Google Scholar 

  5. J.M. Borwein, “A Lagrange multiplier theorem and a sandwich theorem for convex relations,”Mathematical Scandinavica 48 (2) (1981) 189–204.

    Google Scholar 

  6. J.M. Borwein, “Stability and regular points of inequality systems,”Journal Optimization Theory and Applications 48 (1986) 9–52.

    Google Scholar 

  7. R.W. Chaney, “On sufficient conditions in nonsmooth optimization,”Mathematics Operations Research 7(3) (1982) 463–475.

    Google Scholar 

  8. R.W. Chaney, “A general sufficiency theorem for nonsmooth nonlinear programming,”Transactions of the American Mathematical Society 276(1) (1983) 235–245.

    Google Scholar 

  9. R.W. Chaney, “Second-order sufficiency conditions for nondifferentiable programming problems,”SIAM Journal Control and Optimization 20(1) (1982) 20–33.

    Google Scholar 

  10. R. Cominetti,Analyse du second ordre de problèmes d'optimisation non différentiables, Thesis, Univ. of Clermont-Ferrand (1989).

  11. R. Cominetti, “Metric regularity, tangent sets and second order optimality conditions,”Applied Mathematics and Optimization 21 (1990) 265–287.

    Google Scholar 

  12. P.H. Dien and P.H. Sach, “Further properties of the regularity of inclusion systems,”Nonlinear Analysis, Theory, Methods and Applications 13 (11) (1989) 1251–1269.

    Google Scholar 

  13. A. Ya. Dubovitskii and A.A. Milyutin, “Extremum problems with constraints,”Zh. Vychisl. Mat. i. Mat. Fiz. 5 (1965) 395–453 =USSR Computational Mathematics and Mathematical Physics 5(3) (1965) 1–80.

    Google Scholar 

  14. A. Ya. Dubovitskii and A.A. Milyutin, “Second variations in extremal problems with constraints,”Doklady Akademii Nauk S.S.S.R. 160 (1965) =Soviet Mathematics Doklady 6 (1965) 12–16.

    Google Scholar 

  15. J. Gwinner, “Results of Farkas type,”Numerical Functional Analysis and Optimization 9 (5&6) (1987) 471–520.

    Google Scholar 

  16. S.P. Han and O.L. Mangasarian, “Exact penalty functions in nonlinear programming,”Mathematical Programming 17 (1979) 251–269.

    Google Scholar 

  17. K.H. Hoffmann and H.J. Kornstaedt, “Higher order necessary conditions in abstract mathematical programming,”Journal of Optimization Theory and Applications 26 (1978) 533–569.

    Google Scholar 

  18. A.D. Ioffe, “Necessary and sufficient conditions for a local minimum 3: Second order conditions and augmented duality,”SIAM Journal Control and Optimization 17 (1979) 266–288.

    Google Scholar 

  19. A.D. Ioffe, “On some recent developments in the theory of second order optimality conditions,” in: S. Dolecki ed.,Optimization, Proc. Conf. Varetz, 1988,Lecture Notes in Mathematics, n° 1405 (Springer Verlag, Berlin, 1989) 55–68.

    Google Scholar 

  20. A.D. Ioffe and V.M. Tikhomirov,Theory of Extremal Problems (Nauka, Moscow, 1974, North-Holland, Amsterdam, 1979).

    Google Scholar 

  21. H. Kawasaki, “An envelope-like effect of infinitely many inequality constraints on second order necessary conditions for minimization problems,”Mathematical Programming 41 (1988) 73–96.

    Google Scholar 

  22. S. Kurcyusz, “On the existence and nonexistence of Lagrange multipliers in Banach spaces,”Journal of Optimization Theory and Applications 20 (1976) 81–110.

    Google Scholar 

  23. F. Lempio and J. Zowe, “Higher order optimality conditions,” in: B. Korte ed.,Modern Applied Mathematics (North-Holland, Amsterdam, 1982) 148–193.

    Google Scholar 

  24. E.S. Levitin, A.A. Milyutin and N.P. Osmolovski, “Conditions of high order for a local minimum in problems with constraints,”Uspekhi Mat. Nauk 33 (6) (1978) 85–148 =Russian Mathematical Surveys 33(6) (1978) 97–168.

    Google Scholar 

  25. A. Linnemann, “Higher-order necessary conditions for infinite and semi-infinite optimization,”Journal Optimization Theory and Applications 38 (4) (1982) 483–512.

    Google Scholar 

  26. D.G. Luenberger,Optimization by Vector Spaces Methods (John Wiley, New York, 1969).

    Google Scholar 

  27. J. Maguregui, “Regular multivalued functions and algorithmic applications,” Ph. D. Thesis, University of Wisconsin-Madison (1976).

  28. H. Maurer, “First and second order sufficient optimality conditions in mathematical programming and optimal control,”Mathematical Programming Study 14 (1981) 163–177.

    Google Scholar 

  29. H. Maurer and J. Zowe, “First and second-order necessary and sufficient optimality conditions for infinitedimensional programming problems,”Mathematical Programming 16 (1979) 98–110.

    Google Scholar 

  30. Ph. Michel, “Problème des inégalités. Applications à la programmation et au contrôle optimal,”Bulletin de la Société Mathématique de France 101 (1973) 413–439.

    Google Scholar 

  31. Ph. Michel, “Problèmes d'optimisation définis par des fonctions qui sont sommes de fonctions convexes et de fonctions dérivables,”Journal de Mathématiques Pures et Appliquées 53 (1974) 321–330.

    Google Scholar 

  32. L.W. Neustadt, “An abstract variational theory with applications to a broad class of optimization problems I. General theory,”Journal S.I.A.M. Control 4 (3) (1966) 505–527.

    Google Scholar 

  33. L.W. Neustadt, “An abstract variational theory with applications to a broad class of optimization problems II, Applications,”Journal S.I.A.M. Control 5(1) (1967) 90–137.

    Google Scholar 

  34. J.-P. Penot, “On the existence of Lagrange multipliers in nonlinear programming in Banach spaces,” in: A. Auslender, W. Oettli, J. Stoer ed.,Optimization and Optimal Control, Proc. Conf. Oberwolfach (1980),Lecture Notes in Control and Information Science n° 30 (Springer Verlag, Berlin, 1981) 89–104.

    Google Scholar 

  35. J.-P. Penot, “On regularity conditions in mathematical programming,”Mathematical Programming Study 19 (1982) 167–199.

    Google Scholar 

  36. J.-P. Penot, “A view of second order extremality conditions,” in C. Lemaréchal ed.,Third Franco-German Conference in Optimization, INRIA, July 1984, pp. 34–39.

  37. J.-P. Penot, “A geometric approach to higher order necessary conditions,” manuscript, July 1984.

  38. J.-P. Penot, “Generalized higher order derivatives and higher order optimality conditions,” preprint, Univ. of Santiago, Nov. 1984.

  39. J.-P. Penot, “Optimality conditions for composite functions,” preprint Univ. of Pau 1990.

  40. S. Robinson, “Stability theory for systems of inequalities, part II: differentiable nonlinear systems,”SIAM Journal Numerical Analysis 13 (1976) 497–513.

    Google Scholar 

  41. S. Robinson, “Local structure of feasible sets in nonlinear programming. Part I. Regularity,” inNumerical Methods, Caracas (1982),Lecture Notes in Mathematics n° 1005 (Springer Verlag, Berlin, 1983) 240–251.

    Google Scholar 

  42. R.T. Rockafellar, “First and second-order epi-differentiability in nonlinear programming.”Transactions American Mathematical Society 307 (1) (1988) 75–108.

    Google Scholar 

  43. R.T. Rockafellar, “Second-order optimality conditions in nonlinear programming obtained by way of epiderivatives,”Mathematics of Operation Research 14 (3) (1989) 462–484.

    Google Scholar 

  44. F. Tröltzsch, “On changing the spaces in Lagrange multiplier rules for the optimal control of non-linear operator equations,”Optimization 16 (6) (1985) 877–885.

    Google Scholar 

  45. C. Vîrsan, “Necessary conditions of extremality of high order,”Revue Roumaine de Mathématiques Pures et Appliquées 28 (1973) 591–611.

    Google Scholar 

  46. J. Zowe and S. Kurcyusz, “Regularity and stability for the mathematical programming problem in Banach spaces,”Applied Mathematics and Optimization 5 (1) (1979) 46–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penot, JP. Optimality conditions in mathematical programming and composite optimization. Mathematical Programming 67, 225–245 (1994). https://doi.org/10.1007/BF01582222

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01582222

Keywords

Navigation