Skip to main content
Log in

Solving matching problems with linear programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we describe an implementation of a cutting plane algorithm for the perfect matching problem which is based on the simplex method. The algorithm has the following features:

  • -It works on very sparse subgraphs ofK n which are determined heuristically, global optimality is checked using the reduced cost criterion.

  • -Cutting plane recognition is usually accomplished by heuristics. Only if these fail, the Padberg-Rao procedure is invoked to guarantee finite convergence.

Our computational study shows that—on the average—very few variables and very few cutting planes suffice to find a globally optimal solution. We could solve this way matching problems on complete graphs with up to 1000 nodes. Moreover, it turned out that our cutting plane algorithm is competitive with the fast combinatorial matching algorithms known to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Ball and U. Derigs, “An analysis of alternate strategies for implementing matching algorithms”,Networks 13 (1983) 517–549.

    Google Scholar 

  • R.E. Burkard and U. Derigs,Assignment and Matching Problems: Solution Methods with Fortran-Programs (Springer Lecture Notes in Economics and Mathematical Systems, No. 184, Berlin, 1980).

    Google Scholar 

  • H. Crowder and M.W. Padberg, “Solving large-scale symmetric travelling salesman problems”,Management Science 26 (1980) 495–509.

    Google Scholar 

  • W. Cunningham and A. Marsh, “A primal algorithm for optimum matching”,Mathematical Programming Study 8 (1978) 50–72.

    Google Scholar 

  • U. Derigs, “Solving matching problems via shortest path techniques”, Report No. 83263-OR, Institut für Ökonometrie und Operations Research, Universität Bonn (Bonn, 1983).

    Google Scholar 

  • U. Derigs, “Solving large scale matching problems efficiently—A new primal matching approach”, Report No. 84346-OR, Institut für Ökonometrie und Operations Research, Universität Bonn (Bonn, 1984).

    Google Scholar 

  • E.A. Dinic, “Algorithm for solution of a problem of maximum flow in a network with power estimation”,Soviet Mathematics Doklady 11 (1970) 1277–1280.

    Google Scholar 

  • J. Edmonds, “Paths, trees and flowers”,Canadian Journal of Mathematics 17 (1965) 449–467.

    Google Scholar 

  • J. Edmonds, “Maximum matching and a polyhedron with 0, 1 vertices”,Journal of Research National Bureau of Standards 69B (1965) 125–130.

    Google Scholar 

  • L.R. Ford and D.R. Fulkerson, “A simple algorithm for finding maximal flows and an application to the Hitchcock problem”,Canadian Journal of Mathematics 9 (1957) 210–218.

    Google Scholar 

  • F. Glover, D. Klingman, J. Mote and D. Whitman, “A primal simplex variant for the maximum flow problem”, Center for Cybernetic Studies, CCS 362 (Austin, TX, 1979).

    Google Scholar 

  • M. Grötschel, M. Jünger and G. Reinelt, “A cutting plane algorithm for the linear ordering problem”,Operations Research 32 (1984) 1195–1220.

    Google Scholar 

  • M. Grötschel, L. Lovász and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization”,Combinatorica 1 (1981) 169–197.

    Google Scholar 

  • M. Grötschel and W.R. Pulleyblank, “Weakly bipartite graphs and the max-cut problem”,Operations Research Letters 1 (1981) 23–27.

    Google Scholar 

  • A.V. Karzanov, “Determining the maximal flow in a network by the method of preflows”,Soviet Mathematics Doklady 15 (1972) 434–437.

    Google Scholar 

  • E.L. Lawler,Combinatorial optimization: Networks and matroids (Holt, Rinehart and Winston, New York, 1976).

    Google Scholar 

  • V.M. Malhorta, M.P. Kumar and S.N. Maheshwari, “An O(|V|3) algorithm for finding maximum flows in networks”,Information Processing Letters 7 (1978) 277–278.

    Google Scholar 

  • M.W. Padberg and M.R. Rao, “Odd minimum cut-sets andb-matchings”,Mathematics of Operations Research 7 (1982) 67–80.

    Google Scholar 

  • M.W. Padberg and M.R. Rao, “The Russian method for linear inequalities III: Bounded integer Programming”, Preprint, GBA New York University, New York, May 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grötschel, M., Holland, O. Solving matching problems with linear programming. Mathematical Programming 33, 243–259 (1985). https://doi.org/10.1007/BF01584376

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01584376

Key words