Skip to main content
Log in

Geometry of optimality conditions and constraint qualifications

  • Published:
Mathematical Programming Submit manuscript

Abstract

Certain types of necessary optimality conditions for mathematical programming problems are equivalent to corresponding regularity conditions on the constraint set. For any problem, a certain natural optimality condition, dependent upon the particular constraint set, is always satisfied. This condition can be strengthened in numerous ways by invoking appropriate regularity assumptions on the constraint set. Results are presented for Euclidean spaces and some extensions to Banach spaces are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Abadie, “Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints,” in:Optimization, Ed. R. Fletcher (Academic Press, 1969).

  2. J. Abadie, “On the Kuhn-Tucker theorem,” in:Nonlinear Programming, Ed. J. Abadie (North-Holland Publishing Co., Amsterdam, 1967).

    Google Scholar 

  3. K. Arrow, L. Hurwicz and H. Uzawa, “Constraint qualifications in maximization problems,”Naval Research Logistics Quarterly 8 (1961) 175–191.

    Google Scholar 

  4. M. Canon, C. Cullum and E. Polak, “Constrained minimization problems in finite-dimensional spaces,”SIAM Journal on Control 4 (1966) 528–547.

    Google Scholar 

  5. A. Charnes and W. Cooper,Management models and industrial applications of linear programming (John Wiley and Sons, New York, 1961).

    Google Scholar 

  6. A. Colville, “A comparative study of nonlinear programming codes,” IBM, New York Scientific Center Report 320-2949, NYSC, IBM, 410 East 62nd St., New York, New York, 10021.

  7. R. Cottle, “A theorem of Fritz John in mathematical programming,” RAND Memorandum RM-3858-PR (October 1963).

  8. J. Evans, “On constraint qualifications in nonlinear programming,”Naval Research Logistics Quarterly, to appear.

  9. J. Farkas, “Über die Theorie der einfachen Ungleichungen,”Zeitschrift für die reine und angewandte Mathematik 124 (1901) 1–27.

    Google Scholar 

  10. R. Fletcher, “A class of methods for nonlinear programming with termination and convergence properties,”Integer and Nonlinear Programming, Ed. J. Abadie (North-Holland Company, Amsterdam, 1970).

    Google Scholar 

  11. F. John, “Extremum problems with inequalities as subsidiary conditions, Studies and Essays,”Courant Anniversary Volume (Interscience, New York, 1948).

    Google Scholar 

  12. D. Gale,The theory of linear economic models (McGraw-Hill Book Company, Inc., New York, 1960) p. 44.

    Google Scholar 

  13. F. Gould and J. Tolle, “A necessary and sufficient qualification for constrained optimization,”SIAM Journal on Applied Mathematìcs 20 (1971) 164–172.

    Google Scholar 

  14. F. Gould and J. Tolle, “Optimality conditions and constraints qualifications in Banach space,” Institute of Statistics Mimeo Series No. 707, Department of Statistics, University of North Carolina, Chapel Hill, N.C. 27514.

  15. M. Guignard, “Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space,”SIAM Journal on Control 7 (1969) 232–241.

    Google Scholar 

  16. M. Guignard, “Gahiers du Bureau Universitaire De Recherche Operationnclle, Cahier No. 14, “Conditions d'Optimalité et Dualité en Programmation Mathématique, Paris, 1970. (Available from Bureau Universitaire de Statistique de l'Université de Paris, Tour 45 55, 9, Quai Saint-Bernard, Paris Ve).

  17. G. Hadley,Nonlinear and dynamic programming (Addison-Wesley, Reading, Massachusetts, 1964).

    Google Scholar 

  18. L. Hurwicz, “Programming in linear spaces,” in:Studies in linear and nonlinear programming, Eds. K. Arrow, L. Hurwicz and H. Uzawa (Stanford University Press, Stanford, California, 1958).

    Google Scholar 

  19. S. Karlin,Mathematical methods and theory in games, programming, and economics (Addison-Wesley, Reading, Massachusetts, 1959).

    Google Scholar 

  20. H. Kuhn and A. Tucker,Nonlinear programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Ed. J. Neyman (University of California Press, Berkeley, 1951) pp. 481–492.

    Google Scholar 

  21. O. Mangasarian,Nonlinear programming (McGraw-Hill Book Co., New York, 1969).

    Google Scholar 

  22. O. Mangasarian and S. Fromovitz, “The Fritz John necessary optimality conditions in the presence of equality and inequality constraints,”Journal of Mathematical Analysis and Applications 17 (1967) 37–47.

    Google Scholar 

  23. K. Ritter, “Optimization theory in linear spaces,”Mathematische Annalen 184 (1970) 133–154.

    Google Scholar 

  24. M. Simonnard,Programmation lineaire (Dunod, Paris, 1962) p. 388.

    Google Scholar 

  25. M. Slater, “Lagrange multipliers revisited, A contribution to nonlinear programming,” Cowles Commission Paper, Math. 403 (1950).

  26. P. Varaiya, “Nonlinear programming in Banach space,”SIAM Journal on Applied Mathematics 15 (1967) 284–293.

    Google Scholar 

  27. W. Zangwill,Nonlinear programming, A unified approach (Prentice Hall Publishers, Englewood Cliffs, N.J., 1969).

    Google Scholar 

  28. S. Zlobec, “Asymptotic Kuhn-Tucker conditions for mathematical programming problems in a Banach space,”SIAM Journal on Control 8 (1970) 505–512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the Office of Naval Research, Contract No. N00014-67-A-0321-0003 (NR-047-095).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, F.J., Tolle, J.W. Geometry of optimality conditions and constraint qualifications. Mathematical Programming 2, 1–18 (1972). https://doi.org/10.1007/BF01584534

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01584534

Keywords