Skip to main content
Log in

Various definitions of the derivative in mathematical programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper introduces seven derivatives in mathematical programming in locally convex topological vector spaces. All these derivatives have been known in various fields of mathematical sciences but they have never been used before in mathematical programming. The weakest of the seven derivatives is the compact derivative of Gil de Lamadrid and Sova. The derivative used by Neustadt in optimization theory is stronger than the compact derivative and it is equivalent to the derivative introduced by Michal and Bastiani. The main results of the paper show that the optimality conditions of both Lagrange—Kuhn—Tucker type and Caratheodory—John type hold for compactly differentiable functions. In the case of finite-dimensional spaces all these seven derivatives are equivalent to the Fréchet derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.T. Averbukh and O.G. Smolyanov, “The various definitions of the derivative in linear toplogical spaces”,Russian Mathematical Surveys 23 (1968).

  2. M. Balanzat, “La différentielle d'Hadamard—Fréchet dans les espaces vectoriels topologiques”,Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Séries A et B 251 (1960).

    Google Scholar 

  3. A. Bastiani, “Différentiabilité dans les espaces localement convexes, distructures”, Thèse Doctorale en Sciences Mathématiques, Faculté des Sciences, Université de Paris (1962).

  4. A. Ben-Israel, “Linear equations and inequalities on finite dimensional, real or complex, vector spaces: a unified theory”,Journal of Mathematical Analysis and Applications 27 (1969).

  5. B.D. Craven and B. Mond, “Transposition theorems for cone-convex functions”,SIAM Journal on Applied Mathematics 24 (1973).

  6. N. Dunford and J.T. Schwartz,Linear operators, Part I (J. Wiley, New York, 1964) ch. 5.

    Google Scholar 

  7. M. Fréchet, “La notion de différentielle dans l'analyse générale”,Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Séries A et B 180 (1925).

  8. J. Gil de Lamadrid, “Topology of mappings in locally convex topological vector spaces, their differentiation and integration and application to gradient mappings”, Thesis, University of Michigan, Ann Arbor, Mich. (1955).

    Google Scholar 

  9. F.J. Gould and J.W. Tolle, “Geometry of optimality conditions and constraint qualifications”,Mathematical Programming 2 (1972) 1–18.

    Google Scholar 

  10. M. Guignard, “Generalized Kuhn—Tucker conditions for mathematical programming problems in a Banach space”,SIAM Journal on Control 7 (1969).

  11. D.H. Hyers, “A generalization of Fréchet's differential”,Proceedings of the National Academy of Sciences of the U.S.A. 27 (1941).

  12. H.W. Kuhn and A.W. Tucker, “Nonlinear programming”, in:Proceedings of the second Berkeley symposium on mathematical statistics and probability, Ed. J. Neyman (University of California, Berkeley, Calif., 1951).

    Google Scholar 

  13. O.L. Mangasarian,Nonlinear programming (McGraw-Hill, New York, 1969).

    Google Scholar 

  14. G. Marinescu, “Différentielles de Gateaux et Fréchet dans les espaces localement convexes”,Bulletin Mathématique de la Société des Sciences Mathématiques et Physiques de la République Populaire Roumaine 1 (49) (1957).

  15. H. Massam, “Mathematical programming in locally convex topological spaces”, M. Sc. Thesis, McGill University, Montreal, Que. (1973).

    Google Scholar 

  16. A.D. Michal, “Functional analysis in topological group spaces”,Mathematics Magazine 20 (1947).

  17. Y. Nagahisa and Y. Sakawa, “Nonlinear programming in Banach spaces”,Journal of optimization theory and applications 4 (1969).

  18. M.Z. Nashed, “Differentiability and related properties of nonlinear operators: some aspects of the role of differentials in nonlinear functional analysis”, in:Nonlinear functional analysis and applications, Ed. L.B. Rall (Academic Press, New York, 1971).

    Google Scholar 

  19. L.W. Neustadt, “An abstract variational theory with applications to a broad class of optimization problems I. General theory”,SIAM Journal on Control 3 (1966).

  20. L.W. Neustadt, “A general theory of extremals”,Journal of Computer and Systems Sciences 3 (1969).

  21. J. Sabastião e Silva, “Le calcul différentiel et intégral dans les espaces localement convexes, réels ou complexes, I, II”,Atti della Accademia Nazionale dei Lincei, Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali 20, 21 (1956).

    Google Scholar 

  22. M. Sova, “General theory of differentiability in linear topological spaces”,Czechoslovak Mathematical Journal 14 (89) (1964) (in Russian).

  23. M. Sova, “Conditions of differentiability in linear topological spaces”,Czechoslovak Mathematical Journal 16 (91) (1966) (in Russian).

  24. P.P. Varaiya, “Nonlinear programming in Banach spaces”,SIAM Journal on Applied Mathematics 15 (1967).

  25. K. Yoshida,Functional analysis (Academic Press, New York, 1965).

    Google Scholar 

  26. S. Zlobec, “A class of optimality conditions for mathematical programming problems in Banach spaces”,Glasnik Matematički 7 (27) (1972).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massam, H., Zlobec, S. Various definitions of the derivative in mathematical programming. Mathematical Programming 7, 144–161 (1974). https://doi.org/10.1007/BF01585512

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01585512

Keywords

Navigation