Skip to main content
Log in

Weber's problem and weiszfeld's algorithm in general spaces

  • Published:
Mathematical Programming Submit manuscript

⋯Wenn aber schon einmal Theorie getrieben werden soll, (man möchte die Vorliebe dafür angesichts gewisser missglückter Erscheinungen ja allerdings manchmal zum Teufel wünschen) so ist als eine ihrer Formen auch diejenige nötig, die die Abstraktion auf die Spitze treibt.

Alfred Weber, 1909

Abstract

For solving the Euclidean distance Weber problem Weiszfeld proposed an iterative method. This method can also be applied to generalized Weber problems in Banach spaces. Examples for generalized Weber problems are: minimal surfaces with obstacles, Fermat's principle in geometrical optics and brachistochrones with obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. Almgren Jr. and J.E. Taylor, “The geometry of soap films and soap bubbles”,Scientific American 235 (1) (1976) 82–93.

    Google Scholar 

  2. T. Angelopoulos, “Statische und dynamische Berechnung von vorgespannten Netzwerk-Konstruktionen (Olympia-Zeltdach)”, in: J. Beyer, ed.,Finite Element Congress, Baden—Baden, 6–7thNovember 1972 (IKO Software GmbH, Stuttgart, 1972) pp. 263–295.

    Google Scholar 

  3. D. Bhatia, “A note on a duality theorem for a nonlinear programming problem”,Management Science 16 (1970) 604–606.

    Google Scholar 

  4. J. Bloech,Optimale Industriestandorte (Physica—Verlag, Würzburg, 1970).

    Google Scholar 

  5. S.S. Chadha and R.N. Kaul, “A dual non-linear program”,Metrika 19 (1972) 18–22.

    Google Scholar 

  6. A.W. Chan and R.L. Francis, “A least total distance facility configuration problem involving lattice points”,Management Science 22 (1976) 778–787.

    Google Scholar 

  7. L. Collatz,Funktionalanalysis und numerische Mathematik, Die Grundlehren der mathematischen Wissenschaften, Band 120 (Springer, Berlin, 1964).

    Google Scholar 

  8. P. Concus, “Numerical solution of the minimal surface equation”,Mathematics of Computation 21 (1967) 340–350.

    Google Scholar 

  9. R. Courant,Dirichlet's principle, conformal mapping, and minimal surfaces, Pure and applied mathematics, vol. III (Interscience, New York, 1950).

    Google Scholar 

  10. R. Courant and D. Hilbert,Methoden der mathematischen Physik I, 3rd ed., Heidelberger Taschenbücher, Band 30 (Springer, Berlin, 1968).

    Google Scholar 

  11. J.W. Daniel,The approximate minimization of functionals, Prentice—Hall series in automatic computation (Prentice—Hall, Englewood Cliffs, NJ, 1971).

    Google Scholar 

  12. G.B. Dantzig, “On a convex programming problem of Rozanov”,Applied Mathematics and Optimization 1 (1974) 189–192.

    Google Scholar 

  13. B. Dasarathy, “Some maxmin location and pattern separation problems: Theory and algorithms”, Thesis, The Ohio State University (1975).

  14. P.M. Dearing and R.L. Francis, “A minimax location problem on a network”,Transportation Science 8 (1974) 333–343.

    Google Scholar 

  15. P.M. Dearing, R.L. Francis and T.J. Lowe, “Convex location on tree networks”,Operations Research 24 (1976) 628–642.

    Google Scholar 

  16. U. Eckhardt, “On an optimization problem related to minimal surfaces with obstacles”, in: R. Bulirsch, W. Oettli and J. Stoer, eds.,Optimization and optimal control, Lecture notes in mathematics, vol. 477 (Springer, Berlin, 1975) pp. 95–101.

    Google Scholar 

  17. U. Eckhardt, “A generalization of Alfred Weber's problem”, in: R. Henn et al., eds.,Methods of operations research XXV (Anton Hain, Meisenheim, 1977) pp. 34–36.

    Google Scholar 

  18. U. Eckhardt, “On a minimization problem in structural mechanics”, in: J. Stoer, ed.,Optimization techniques, part 2, Lecture notes in control and information sciences, vol. 7 (Springer, Berlin, 1978) pp. 42–50.

    Google Scholar 

  19. J. Elzinga and D.W. Hearn, “Geometrical solutions for some minimax location problems”,Transportation Science 6 (1972) 379–394.

    Google Scholar 

  20. J.W. Eyster and J.A. White, “Some properties of the squared Euclidean distance location problem”AIIE Transactions 5 (1973) 275–280.

    Google Scholar 

  21. Fasbender, “Über die gleichseitigen Dreiecke, welche um ein gegebenes Dreieck gelegt werden können”,Journal für die reine und angewandte Mathematik 30 (1846) 230–231.

    Google Scholar 

  22. R. Finn, “Capillarity phenomena”,Russian Mathematical Surveys 29 (4) (1974) 133–153.

    Google Scholar 

  23. R.L. Francis, “A geometrical solution procedure for a rectilinear distance minimax location problem”,AIIE Transactions 4 (1972) 328–332.

    Google Scholar 

  24. R.L. Francis and A.V. Cabot, “Properties of a multifacility location problem involving Euclidean distances”,Naval Research Logistics Qaqrterly 19 (1972) 335–353.

    Google Scholar 

  25. R.L. Francis and J.M. Goldstein, “Location theory: A selective bibliography”,Operations Research 22 (1974) 400–410.

    Google Scholar 

  26. R.L. Francis and J.A. White,Facility layout and location: An analytical approach (Prentice-Hall, Englewood Cliffs, NJ, 1974).

    Google Scholar 

  27. E.N. Gilbert and H.O. Pollak, “Steiner minimal trees”SIAM Journal on Applied Mathematics 16 (1968) 1–29.

    Google Scholar 

  28. C. Johnson and V. Thomée, “Error estimates for a finite element approximation of a minimal surface”,Mathematics of Computation 29 (1975) 343–349.

    Google Scholar 

  29. I.N. Katz, “Local convergence in Fermat's problem”,Mathematical Programming 6 (1974) 89–104.

    Google Scholar 

  30. I.N. Katz and L. Cooper, “An always-convergent numerical scheme for a random locational equilibrium problem”,SIAM Journal on Numerical Analysis 11 (1974) 683–692.

    Google Scholar 

  31. H.W. Kuhn, “On a pair of dual nonlinear programs”, in: J. Abadie, ed.,Nonlinear programming (North-Holland, Amsterdam, 1967) pp. 37–54.

    Google Scholar 

  32. H.W. Kuhn, “A note on Fermat's problem”,Mathematical Programming 4 (1973) 98–107.

    Google Scholar 

  33. W. Launhardt, “Die Bestimmung des zweckmäβigsten Standortes einer gewerblichen Anlage”,Zeitschrift des Vereines deutscher Ingenieure 26 (1882) columns 105–116.

    Google Scholar 

  34. N. Moisseev and V. Tikhomirov, “Optimization”, in: E. Roubine, ed.,Mathematics applied to physics (Springer, Berlin, 1970) pp. 402–464.

    Google Scholar 

  35. J.G. Morris, “A linear programming solution to the generalized rectangular distance Weber problem”,Naval Research Logistics Quarterly 22 (1975) 155–164.

    Google Scholar 

  36. K.P. Nair and R. Chandrasekaran, “Optimal location of a single service center of certain types”,Naval Research Logistics Quarterly 18 (1971) 503–510.

    Google Scholar 

  37. J.C.C. Nitsche, “Variational problems with inequalities as boundary conditions, or, how to fashion a cheap hat for Giacometti's brother”,Archive for Rational Mechanics and Analysis 35 (1969) 83–113.

    Google Scholar 

  38. G. Polya,Mathematik und plausibles Schließen, Band 1,Induktion und Analogie in der Mathematik (Birkhäuser, Basel, 1962).

    Google Scholar 

  39. D. Sankoff and P. Rousseau, “Locating the vertices of a Steiner tree in an arbitrary metric space”,Mathematical Programming 9 (1975) 240–246.

    Google Scholar 

  40. R. Sturm, “Über den Punkt kleinster Entfernungssumme von gegebenen Punkten”,Journal für die reine und angewandte Mathematik 97 (1884) 49–61.

    Google Scholar 

  41. J. Thomas, “Zur Statik eines gewissen Federsystems imE n ”,Mathematische Nachrichten 23 (1961) 185–195.

    Google Scholar 

  42. O.V. Titov, “Minimal hypersurfaces over soft obstacles” (Russian),Izvestiia Akademii Nauk SSSR, Serita Matematičeskaja 38 (1974) 374–417.

    Google Scholar 

  43. V.P. Varava, E.I. Ershov and R.P. Tarasov, “An equation for the paths in light guides with variable refractive index”,USSR Computational Mathematics and Mathematical Physics 16 (4) (1976) 118–131.

    Google Scholar 

  44. A. Weber,Über den Standort der Industrien. Erster Teil: Reine Theorie des Standorts. Mit einem mathematischen Anhang von Georg Pick (J.C.B. Mohr (Paul Siebeck), Tübingen, 1909).

    Google Scholar 

  45. E. Weiszfeld, “Sur le point par lequel la somme des distances den points donnés est minimum”,Tôhoku Mathematical Journal 43 (1937) 355–386.

    Google Scholar 

  46. R.E. Wendell and A.P. Hurter Jr., “Location theory, dominance, and convexity”,Operations Research 21 (1973) 314–320.

    Google Scholar 

  47. G.O. Wesolowsky and R.F. Love, “A nonlinear approximation method for solving a generalized rectangular distance Weber problem”,Management Science 18 (1972) 656–663.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckhardt, U. Weber's problem and weiszfeld's algorithm in general spaces. Mathematical Programming 18, 186–196 (1980). https://doi.org/10.1007/BF01588313

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01588313

Key words

Navigation