Skip to main content
Log in

Herbrand analyses

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Herbrand's Theorem, in the form of\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\exists } \)-inversion lemmata for finitary and infinitary sequent calculi, is the crucial tool for the determination of the provably total function(al)s of a variety of theories. The theories are (second order extensions of) fragments of classical arithmetic; the classes of provably total functions include the elements of the Polynomial Hierarchy, the Grzegorczyk Hierarchy, and the extended Grzegorczyk Hierarchy\(\mathfrak{E}^\alpha \), α < ε0. A subsidiary aim of the paper is to show that the proof theoretic methods used here are distinguished by technical elegance, conceptual clarity, and wide-ranging applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellin, G.: Ramsey interpreted: a parametric version of Ramsey's theorem. Contemp. Math.106, 17–37 (1990)

    Google Scholar 

  • Buchholz, W., Sieg, W.: A note on polynomial time computable arithmetic. Contemp. Math.106, 51–56 (1990)

    Google Scholar 

  • Buchholz, W., Wainer, S.: Provably computable functions and the fast growing hierarchy. Contemp. Math.65, 179–198 (1987)

    Google Scholar 

  • Buss, S.: Bounded arithmetic. Naples: Bibliopolis 1986

    Google Scholar 

  • Feferman, S.: Theories of finite type related to mathematical practice. In: Handbook of Mathematical Logic, pp. 913–971. Amsterdam: North-Holland 1977

    Google Scholar 

  • Feferman, S.: Polymorphic typed lambda-calculi in a type-free axiomatic framework. Contemp. Math.106, 101–136 (1990)

    Google Scholar 

  • Feferman, S., Sieg, W.: Proof theoretic equivalences between classical and constructive theories for analysis. In: Lect. Notes in Math., vol. 987, pp. 78–142. Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  • Ferreira, F.: Polynomial time computable arithmetic. Contemp. Math.106, 137–156 (1990)

    Google Scholar 

  • Friedman, H., Simpson, S., Smith, R.: Countable algebra and set existence axioms. Ann. Pure Appl. Logic25, 141–181 (1983)

    Google Scholar 

  • Girard, J.-Y.: Proof theory and logical complexity. Naples: Bibliopolis 1987

    Google Scholar 

  • Hilbert, D., Bernays, P.: Grundlagen der Mathematik II. Berlin: Springer 1939

    Google Scholar 

  • Howard, W.A.: Hereditarily majorizable functionals of finite type. In: Lect. Notes Math., vol. 344, pp. 454–461. Berlin Heidelberg New York: Springer 1973

    Google Scholar 

  • Kreisel, G.: On the interpretation of non-finitist proofs I. J. Symb. Logic16, 241–267 (1951)

    Google Scholar 

  • Kreisel, G.: On the interpretation of non-finitist proofs II. Symb. Logic17, 43–58 (1952)

    Google Scholar 

  • Kreisel, G.: Mathematical significance of consistency proofs. J. Symb. Logic23, 155–182 (1958)

    Google Scholar 

  • Luckhardt, H.: Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken. J. Symb. Logic54, 234–263 (1989)

    Google Scholar 

  • Mints, G.: Quantifier-free and one-quantifier systems. J. Sov. Math,1, 71–84 (1973)

    Google Scholar 

  • Mints, G.: What can be done in PRA? Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova60, 93–102 (1976)

    Google Scholar 

  • Parsons, C.D.: Reductions of inductions to quantifier-free induction. Notices Am. Math. Soc.13, 740 (1966)

    Google Scholar 

  • Parsons, C.D.: Ordinal recursion in partial systems of number theory. Notices Am. Math. Soc.13, 857–858 (1966A)

    Google Scholar 

  • Parsons, C.D.: On a number-theoretic choice schema and its relation to induction. In: Kino, Myhill, Vessley (eds.) Intuitionism and proof theory, pp. 459–473. Amsterdam: North-Holland 1970

    Google Scholar 

  • Parsons, C.D.: Onn-quantifier-induction. J. Symb. Logic36, 466–482 (1972)

    Google Scholar 

  • Ritchie, R.W.: Classes of recursive functions based on Ackermann's function. Amp. J. Math.15, 1027–1044 (1963)

    Google Scholar 

  • Rose, H.E.: Subrecursion — functions and hierarchies. Oxford: Oxford University Press 1984

    Google Scholar 

  • Schwichtenberg, H.: Eine Klassifikation der ε0-rekursiven Funktionen. Z. Math. Logik Grundlagen Math.17, 61–74 (1971)

    Google Scholar 

  • Schwichtenberg, H.: Elimination of higher type levels in definitions of primitive recursive functionals by means of transfinite recursion. In: Rose, Shepherdson (eds.) Logic Colloquium '73, pp. 279–303. Amsterdam: North-Holland 1975

    Google Scholar 

  • Schwichtenberg, H.: Proof theory: some applications of cut-elimination. In: Handbook of Mathematical Logic, pp. 867–895. Amsterdam: North-Holland 1977

    Google Scholar 

  • Schwichtenberg, H.: LCF with realizing terms: a framework for the development and verification of programs (Manuscript, 1988)

  • Sieg, W.: Fragments of arithmetic. Ann. Pure Appl. Logic28, 33–71 (1985)

    Google Scholar 

  • Sieg, W.: Reductions of theories for analysis. In: Dorn, Weingartner (eds.) Foundations of Logic and Linguistics, pp. 199–231. New York: Plenum Press 1985A

    Google Scholar 

  • Sieg, W.: Provably recursive functionals of theories with König's Lemma. Rend. Semin. Mat. Torino, Fascicolo speciale 1987, pp. 75–92 (1987)

  • Sieg, W.: Herbrand Analyses. Abstract for the European Summer Meeting of The Ass. Symbolic Logic, Berlin, 1989

  • Schütte, K.: Beweistheorie. Berlin Heidelberg New York: Springer 1960

    Google Scholar 

  • Simpson, S., Smith, R.: Factorization of polynomials and ∑ 10 -induction. Ann. Pure Appl. Logic31, 289–306 (1986)

    Google Scholar 

  • Tait, W.W.: Nested recursion. Math. Ann.143, 236–250 (1961)

    Google Scholar 

  • Tait, W.W.: Infinitely long terms of transfinite type. In: Crossley, Dummett (eds.) Formal systems and recursive functions, pp. 176–185. Amsterdam: North-Holland 1965

    Google Scholar 

  • Tait, W.W.: Normal derivability in classical logic. In: Barwise, J. (ed.) The syntax and semantics of infinitary languages. (Lect. Notes Math., vol. 72, pp. 204–236) Berlin Heidelberg New York: Springer 1968

    Google Scholar 

  • Takeuti, G.: Proof theory, 2nd edn. Amsterdam: North-Holland 1987

    Google Scholar 

  • Wainer, S.: A classification of the ordinal recursive functions. Arch. Math. Logik13, 136–153 (1970)

    Google Scholar 

  • Wilkie, A.J., Paris, J.B.: On the scheme of induction for bounded arithmetic formulas. Ann. Pure Appl. Logic35, 261–302 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Kurt Schütte on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieg, W. Herbrand analyses. Arch Math Logic 30, 409–441 (1991). https://doi.org/10.1007/BF01621477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01621477

Keywords

Navigation