Skip to main content

Advertisement

Log in

Collision: Modeling, simulation and identification of robotic manipulators interacting with environments

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

The performance of many robotic tasks depends greatly on their dynamic collision behavior. This article presents a simple method for modeling and simulating collision behavior in manipulators. The main goal in this task is to provide informative contact models. The proposed models encompasscollision attributes which comprise not only (local) contact surface properties but also structural properties of the environmental object and the manipulator. With this method, the entire dynamic and interactive motion of the manipulator with the environmental object can be simulated effectively. This is verified by our simulation results. To facilitate our investigation, a 2 DOF planar elbow manipulator with PD control is considered in the simulations as well as theoretical analysis. The simulation results are used to highlight the collision attributes which affect collision behavior and to study the effects of these attributes on the manipulator-work environment safety and performance. On the other hand, the reliable operation of intelligent robotic systems in unstructured environments requires the estimation of collision attributes before the prediction of the collision behavior can be completed. For this purpose, we introduce the notion ofcollision identification. The present paper introduces a framework for collision identification in robotic tasks. The proposed framework is based on Artificial Neural Networks (ANNs) and provides fast and relatively reliable identification of the collision attributes. The simulation results are used to generate training data for the set of ANNs. A modularized ANN-based architecture is also developed to reduce the training effort and to increase the accuracy of ANNs. The test results indicate the satisfactory performance of the proposed collision identification system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alfrey, T.:Mechanical Behaviour of High Polymers, Interscience, New York, 1948, p. 132.

    Google Scholar 

  2. Allen, P. K. and Michelman, P.: Acquisition and interpreting of 3-D sensor data from touch,IEEE Trans. Robotics and Automation 6(4) (1990).

  3. Anderson, R. J.: Dynamic damping control: Implementation issues and simulation results, inProc. IEEE Conf. Robotics and Automation, Cincinnati, Vol. 1, 1987, pp. 68–77.

    Google Scholar 

  4. Anderson, C. W.: Learning to control an inverted pendulum using neural networks, inIEEE Control Systems Magazine (Apr. 1989), pp. 31–37.

  5. Antsaklis, P. J.: Neural networks in control systems,IEEE Control Systems Magazine 10(3) (Apr. 1990).

  6. Asada, H. and Golfine, N.: Optimal compliance design for grinding tool holders,Proc. IEEE Int. Conf. Robotic and Automation, St. Louis, MO, 1985, pp. 316–322.

  7. Barken, P.: Impact, in H. A. Rothbart (ed.),Mechanical Design and Systems Handbook 2nd edn, McGraw-Hill, New York, 1985.

    Google Scholar 

  8. Bavarian, B.: Introduction to neural networks for intelligent control,IEEE Control Systems Magazine 8(2) (Apr. 1988).

  9. Bowden, F. P. and Tabor, D.:The Friction and Lubrication of Solids, Oxford University Press, Fair Lawn, NJ, 1954.

    Google Scholar 

  10. Cai, L. and Goldenberg, A. A.: Robust control of robot using Cartesian space feedback, inProc. IEEE Int. Conf. Robotics and Automation, Philadelphia, PA, Apr. 1988, pp. 1010–1015.

  11. Carpenter, G. A. and Grossberg, S.: Neural dynamics of category learning and recognition: Attention memory consideration and amnesia, in J. Davis, R. Newburgh and E. Wegmar (eds),Brain Structure, Learning, and Memory, AAAS Symposium Series, 1986.

  12. Coleman, B. D. and Noll, W.: An approximation theorem for functionals with applications in continuum mechanics,Arch. Rotational Mechanics and Analysis 6 (1960), 355–370.

    Google Scholar 

  13. Colgate, J. E.: The control of dynamically interacting systems, PhD Thesis, MIT, Dept. Mechanical Engineering, 1988.

  14. Colgate, J. E. and Hogan, N.: Robust control of dynamically interacting manipulators,Intl. J. Control 48(1) (1988).

  15. Colgate, J. E.: On the intrinsic limitations of force feedback compliance controllers, in Y. Youcef-Toumi and Kazerooni (eds),ASME Robotics Res. (1989).

  16. Crues, G. J.:Viscoelasticity—Basic Theory and Applications to Concrete Structures, Springer-Verlag, Berlin-Heidelberg, 1986.

    Google Scholar 

  17. Cutkosky, W. R. and Wright, P. K.: Friction stability and the design of robot fingers,Intl. J. Robotics Res. 5(4) (1986), 20–37.

    Google Scholar 

  18. Derome, J. R., Grayson, T. W., and McDonald, D. M.: The viscoelastic properties of free paint films, Naval Research Establishment, Report No. 5814, Canada, Oct. 1958.

  19. Engel, P. A.:Impact Wear of Materials, Elsevier, Amsterdam, 1976.

    Google Scholar 

  20. Fahlman, S. E.: Faster-learning variations on backpropagation: An empirical study, inProc. 1988 Connectionist Models Summer School, Carnegie Melon University, Pittsburg, PA, June 1988, pp. 38–51.

    Google Scholar 

  21. Fasse, E. D. and Hogan, N.: A Lyapunov-based approach to designing manipulator controllers robust to interaction with dynamic environments,Symp. Robotics, ASME Winter Annual Meeting, Vol. 11, Chicago, IL, 1988, pp. 115–124.

  22. Featherstone, R.: Robot dynamics algorithm, PhD Thesis, Department of Artificial Intelligence, University of Edinburgh, 1984.

  23. Freund, E.: Fast nonlinear control with arbitrary pole placement for industrial robotics and manipulators,Int. J. Robotics Res. 1(1) (1982), 65–78.

    Google Scholar 

  24. Fujita, T. and Hattori, S.: Periodic vibration and impact characteristics of a nonlinear system with collision,Bull. JSME 23(177) (1980), 409–418.

    Google Scholar 

  25. Gardner, J. F., Brandt, A., and Luecke, G.: Applications of neural networks for trajectory control of robots, inProc. 5th Int. Conf. Advanced Robotics—Robots in Unstructured Environments (91 ICAR), Pisa, Italy, June 1991, pp. 487–492.

  26. Guran, A., Rimrott, F. P. J. and Janabi-Sharifi, F.: On the stability of a spinning viscoelastic column,Intl. J. Mechanics of Structures and Machines 19(4) (1991), 437–455.

    Google Scholar 

  27. Gustafsson, L.: Deburring with industrial robots,SME Deburing and Surface Conditioning Conference, 1983.

  28. Harris, C. M. (ed.): Shock and vibration handbook, 3rd edn, McGraw-Hill, New York, 1988.

    Google Scholar 

  29. Haug. E. J., Wu, S. G., and Yuang, S. M.: Dynamics of mechanical systems with columb friction, stiction, impact and constraint addition-deletion I,J. Mech. Mach. Theory 21(5) (1986), 401–406.

    Google Scholar 

  30. Hecht-Nielson, R.: Application of counterpropagation networks,Neural Networks 1 (1988), 131–139.

    Google Scholar 

  31. Hogan, N.: Impedance control: An approach to manipulation, Part II: Implementation,ASME J. Dynamic Systems, Measurement, and Control 107(1) (1985), 8–16.

    Google Scholar 

  32. Hogan, N.: On the stability of manipulators performing contact tasks,IEEE J. Robotics and Automation 4(6) (Dec. 1988).

  33. Hopfield, J. J.: Neural networks and physical systems with emergent collective computational abilities,Proc. Natl. Acad. Sci., USA 79 (Apr. 1982), 2554–2558.

    Google Scholar 

  34. Horne, B., Jamshidi, M., and Vadiee, N.: Neural networks in robotics: A survey,J. Intelligent and Robotic Systems 3 (1990), 51–66.

    Google Scholar 

  35. Isermann, R. and Lachmann, K. H.: Parameter-adaptive control with configuration aids and supervision functions,Automatica 21(6) (1986), 625–638.

    Google Scholar 

  36. Janabi-Sharifi, F., Wilson, W. J., and Pang, G. K.: A multi-layer learning model,J. Intelligent and Robotic Systems 8 (1993), 399–423.

    Google Scholar 

  37. Kahng, J. and Amirouche, F. M. L.: Impact force analysis in mechanical hand design, Part I,Int. J. Robotics and Automation 3(3) (1988), 158–164.

    Google Scholar 

  38. Kazerooni, H., Houpt, P., and Sheridan, T.: Robust compliant motion for manipulators, Part I–II,IEEE J. Robotics and Automation RA-2(2) (1986), 83–105.

    Google Scholar 

  39. Khosla, P. K.: Choosing sampling rates for robot control, inProc. IEEE Int. Conf. Robotics and Automation, Raleigh, NC, 1987, pp. 169–174.

  40. Klatzky, R., Ledermann, S., and Metzger, V.: Identifying objects by touch: An expert system,Perception and Psychophysics 37 (1985), 299–302.

    Google Scholar 

  41. Kohonen, T.: Self-organization and Associative Memory, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  42. Kotzev, A., Cherchas, D. B., Lawrence, P. D., and Sepehri, N.: Generalized predictive control of a robotic manipulator with hydraulic actuators,Robotica 10 (1992), 447–459.

    Google Scholar 

  43. Kroschwitz, J. I., (ed.):Polymers:An Encyclopedic Sourcebook of Engineering Properties, Wiley, New York, 1987.

    Google Scholar 

  44. Kung, S.-Y. and Hwang, J.-N.: Neural network architectures for robotic applications,IEEE Trans. on Robotics and Automation 5(5) (Oct. 1989), 641–657.

    Google Scholar 

  45. Li, W. and Slotine, J.-J. E.: Neural network control of unknown nonlinear systems, inProc. 8th American Control Conf., Pittsburg, PA, Vol. 2, June 1989, pp. 1136–1141.

  46. Lippmann, R. P.: An introduction to computing with neural nets,IEEE ASSP Magazine (Apr. 1987).

  47. Lippmann, R. P., Gold, B., and Malpass, M. L.: A comparison of hamming and Hopfield neural nets for pattern classification, MIT Lincoln Laboratory Tech. Rep., TR-769, 1987.

  48. Love, A. E. H.: Mathematical theory of elasticity, 4th edn, Dover, New York, 1927.

    Google Scholar 

  49. Luh, J. Y. S., Walker, M. W., and Paul, R. P.: Resolved acceleration control of mechanical manipulators,IEEE Trans. Auto. Control. AC-25 (1980), 195–200.

    Google Scholar 

  50. Luh, J. Y. S.: A Scheme for collision avoidance with minimum distance traveling for industrial robots,J. Robotic Systems 1(1) (1984), 5–26.

    Google Scholar 

  51. Maciejewski, A. A. and Klein, C. A.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,Int. J. Robotics Res. 4(3) (1985), 109–117.

    Google Scholar 

  52. McClamroch, N. H. and Wang, D.: Feedback stabilization and tracking of constrained manipulators,IEEE Trans. on Auto. Control AC-33(5) (1988), 419–426.

    Google Scholar 

  53. McCrum, N. G., Buckley, C. P. and Bucknall, C. B.:Principles of Polymer Engineering, Oxford University Press, 1988.

  54. Mills, J. K.: Manipulator transition to and from contact tasks: A discontinuous control approach, inProc. IEEE Int. Conf. Robotics and Automation, Cincinnati, Ohio, Vol. 1, 1990, pp. 440–446.

  55. Miyamoto, H., Kawato, M., Setoyama, T., and Suzuki, R.: Feedback-error-learning neural network for trajectory control of a robotic manipulator,Neural Networks 1 (1988), 251–265.

    Google Scholar 

  56. Ness, N.: Time-dependent buckling of a uniformly heated column, Tech. Note 3139, National Advisory Committee for Aeronautics (NACA), 1952.

  57. Pati, Y. C., Krishnapasad, P. S., and Peckerar, M. C.: An analog neural network solution to the inverse problem of early taction,IEEE Trans. Robotics and Automation 8(2) (Apr. 1992).

  58. Pourboghrat, F.: Toward the intelligent control of robots,J. Intelligent and Robotic Systems 3 (1990), 73–85.

    Google Scholar 

  59. Raibert, M. H. and Craig, J. J.: Hybrid position/force control of manipulators,J. Dynamic Sys., Measurement and Control 102(2) (1981), 126–133.

    Google Scholar 

  60. Ritter, H. J., Martinez, T. M. and Schulten, K. J.: Topology-conserving maps for learning visumotor-coordination,Neural Networks 2 (1989), 159–168.

    Google Scholar 

  61. Roark, R. J.:Formulas for Stress and Strain, McGraw-Hill, New York, 1965.

    Google Scholar 

  62. Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning internal representation by error propagation, in D. E. Rumelhart and J. L. McCelland (eds),Parallel Distributed Processing:Exploration in the Microstructure of Cognition, Vol. 1, 1986.

  63. Schmidt, G. and Xu, X.: A comparison of model-based path control algorithms for direct-drive SCARA robots,Int. J. Intelligent and Robotic Systems 5 (1992), 241–252.

    Google Scholar 

  64. Selfridge, O. G., Sutton, R. S., and Barto, A. G.: Training and tracking in robotics,Proc. IJCAI-85, 1985, pp. 670–672.

  65. Seraji, H.: Task-based configuration control of redundant manipulators,J. Robotic Systems 9(3) (1992), 411–451.

    Google Scholar 

  66. Shigley, J. E.:Mechanical Engineering Design, McGraw-Hill, New York, 1977.

    Google Scholar 

  67. Spong, M. W. and Vidyasagar, M.:Robot Dynamics and Control, Wiley, New York, 1989.

    Google Scholar 

  68. Stansfield, S.: A robotic perceptual system utilizing passive vision and active touch,Int. J. Robotics Res. 7(6) (1988), 138–161.

    Google Scholar 

  69. Stansfield, S. A.: Knowledge-based robotic grasping, inProc. IEEE Int. Conf. Robotics and Automation, Vol. 2, Cincinnati, OH, May 1990, pp. 1270–1275.

  70. Tennyson, R. C., Zimcik, D. and Tulk, J. D.: The analysis of the dynamic response to linear viscoelastic materials, UTIAS Report. No. 159, Institute of Aerospace Studies, University of Toronto, 1972.

  71. Waibel, A.: Consonant recognition by modular construction of large phonemic time-delay neural networks,Advances in Neural Information Processing Systems 1 (1989), 215–223.

    Google Scholar 

  72. Walker, I. D.: The use of kinematic redundancy in reducing impact and control effects in manipulators, inProc. IEEE Conf. Robotics and Automation, Cincinnati, Ohio, Vol. 1, 1990, pp. 434–439.

  73. Wang, Y. and Paul, R. P.: Modeling impact dynamics for robotic operations, inProc. IEEE Int. Conf. Robotics and Automation, Rayleigh, NC, 1987, pp. 678–683.

    Google Scholar 

  74. Wen, J. T. and Murphy, S.: Stability analysis of position and force control problems for robot arms, inProc. IEEE 1990 Int. Conf. Robotics and Automation, Cincinnati, OH, 1990, pp. 252–257.

  75. Wieland, A. and Leighton, R.: Geometric analysis of neural network capabilities, inInt. Conf. on Neural Networks, 1987, pp. 385–391.

  76. Wittenberg, J.:Dynamics of Systems of Rigid Bodies, B. G. Teubner, Stuttgart, 1977.

    Google Scholar 

  77. Youcef-Toumi, K. and Gutz, D.: Impact and force control, inProc. IEEE Conf. Robotics and Automation, 1989, pp. 410–416.

  78. Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning: I, II, III,Information Sciences 8 (1975), 199–249, 301–357;9 (1975), 43–80.

    Google Scholar 

  79. Zheng, Y. F. and Hemami, H.: Mathematical modeling of a robot collision with its environment,J. Robotic Systems 2(3) (1985), 289–307.

    Google Scholar 

  80. Zukas, J. A., Nicholas, T., Swift, H. F., Greszczuk, L. B., and Curran, D. R.:Impact Dynamics, Wiley, New York, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janabi-Sharifi, F. Collision: Modeling, simulation and identification of robotic manipulators interacting with environments. J Intell Robot Syst 13, 1–44 (1995). https://doi.org/10.1007/BF01664754

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01664754

Key words