Skip to main content
Log in

A method for fast energy estimation and visualization of protein-ligand interaction

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A new computational and graphical method for facilitating ligand-protein docking studies is developed on a three-dimensional computer graphics display. Various physical and chemical properties inside the ligand binding pocket of a receptor protein, whose structure is elucidated by X-ray crystal analysis, are calculated on three-dimensional grid points and are stored in advance. By utilizing those tabulated data, it is possible to estimate the non-bonded and electrostatic interaction energy and the number of possible hydrogen bonds between protein and ligand molecules in real time during an interactive docking operation. The method also provides a comprehensive visualization of the local environment inside the binding pocket.

With this method, it becomes easier to find a roughly stable geometry of ligand molecules, and one can therefore make a rapid survey of the binding capability of many drug candidates. The method will be useful for drug design as well as for the examination of protein-ligand interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, R.N., Hansch, C., Kim, K.H., Omiya, B., Fukumura, G., Selassie, C.D., Jow, P.Y.C., Blaney, J.M. and Langridge, R., Arch. Biochem. Biophys., 215 (1982) 319–328.

    Google Scholar 

  2. Smith, G.M., Hangauer, D.G., Andose, J.D., Bush, B.L., Fluder, E.M., Gund, P. and McIntyre, E.F., Drug Inf. J., 18 (1984) 167–178.

    Google Scholar 

  3. Blaney, J.M., Weiner, P.K., Dearing, A., Kollman, P.A., Jorgensen, E.C., Oatley, S.J., Burridge, J.M. and Blake, C.C.F., J.Am.Chem.Soc., 104 (1982) 6424–6434.

    Google Scholar 

  4. Freudenreich, C., Samama, J.-P. and Biellmann, J.-F., J.Am.Chem.Soc., 106 (1984) 3344–3353.

    Google Scholar 

  5. Weiner, P.K., Langridge, R., Blaney, J.M., Schaefer, R. and Kollman, P.A., Proc. Natl.Acad.Sci. USA, 79 (1982) 3754–3758.

    Google Scholar 

  6. Blaney, J.M., Jorgensen, E.C., Connolly, M.L., Ferrin, T.E., Langridge, R., Oatley, S.J., Burridge, J.M. and Blake, C.C.F., J.Med.Chem., 25 (1982) 785–790.

    Google Scholar 

  7. Itai, A. and Tomioka, N., Abstracts of Papers, 6th Symposium on Medicinal Chemistry, Pharmaceutical Society of Japan, Tokyo, 1984, p. 105.

  8. Tomioka, N., Itai, A. and Iitaka, Y., In Iitaka, Y. and Itai, A. (Eds.) Proceedings of the Symposium on Three-Dimensional Structures and Drug Design, Univ. Tokyo Press, 1987, pp. 186–194.

  9. Goodford, P.J., J. Med.Chem., 28 (1985) 849–857.

    Google Scholar 

  10. Weiner, P.K. and Kollman, P.A., J.Comp.Chem., 2 (1981) 287–303.

    Google Scholar 

  11. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J.Comp.Chem., 4 (1983) 187–217.

    Google Scholar 

  12. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Jr. and Weiner, P., J.Am.Chem.Soc., 106 (1984) 765–784.

    Google Scholar 

  13. Warshel, A., J.Phys.Chem., 83 (1979) 1640–1652.

    Google Scholar 

  14. McCammon, J.A., Wolynes, P.G. and Karplus, M., Biochemistry, 18 (1979) 927–942.

    Google Scholar 

  15. Kollman, P.A., Weiner, P.K. and Dearing, A., Biopolymers, 20 (1981) 2583–2621.

    Google Scholar 

  16. Murray-Rust, P. and Glusker, J.P., J.Am.Chem.Soc., 106 (1984) 1018–1025.

    Google Scholar 

  17. Vedani, A. and Dunitz, J.D., J.Am.Chem.Soc., 107 (1985) 7653–7658.

    Google Scholar 

  18. Hansch, C., Li, R., Blaney, J.M. and Langridge, R., J.Med.Chem., 25 (1982) 777–784.

    Google Scholar 

  19. Kuyper, L.F., Roth, B., Baccanari, D.P., Ferone, R., Beddell, C.R., Champness, J.N., Stammers, D.K., Dann, J.G., Norrington, F.E.A., Baker, D.J. and Goodford, P.J., J.Med.Chem., 25 (1982) 1120–1122.

    Google Scholar 

  20. Ghose, A.K. and Crippen, G.M., J.Med.Chem., 27 (1984) 901–914.

    Google Scholar 

  21. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J.Biol. Chem., 257 (1982) 13650–13662.

    Google Scholar 

  22. Matthews, D.A., Bolin, J.T., Burridge, J.M., Filman, D.J., Volz, K.W. and Kraut, J., J.Biol.Chem., 260 (1985) 392–399.

    Google Scholar 

  23. Koetzle, T.F. and Williams, G.J.B., J.Am.Chem.Soc., 98 (1976) 2074–2078.

    Google Scholar 

  24. Kosugi, N. and Kuroda, H., Chem.Phys.Lett., 74 (1980) 490–493.

    Google Scholar 

  25. Matthews, D.A., Bolin, J.T., Burridge, J.M., Filman, D.J. Volz, K.W., Kaufman, B.T., Beddell, C.R., Champness, J.N., Stammers, D.K. and Kraut, J., J. Biol.Chem., 260 (1985) 381–391.

    Google Scholar 

  26. Busetta, B., Tickle, I.J. and Blundell, T.L., J.Appl.Cryst., 16 (1983) 432–437.

    Google Scholar 

  27. Pattabiraman, N., Levitt, M., Ferrin, T.E. and Langridge, R., J.Comp.Chem., 6 (1985) 432–436.

    Google Scholar 

  28. Lippincott, E.R. and Schroeder, R., J.Chem.Phys., 23 (1955) 1099–1106.

    Google Scholar 

  29. Chidambaram, R., Balasubramanian, R. and Ramachandran, G.N., Biochim.Biophys.Acta. 221 (1970) 182–195.

    Google Scholar 

  30. Huber, R., Kukla, D., Bode, W., Schwager, P., Bartels, K., Deisenhofer, J. and Steigemann, W., J.Mol.Biol., 89 (1974) 73–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomioka, N., Itai, A. & Iitaka, Y. A method for fast energy estimation and visualization of protein-ligand interaction. J Computer-Aided Mol Des 1, 197–210 (1987). https://doi.org/10.1007/BF01677044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01677044

Key words

Navigation