Skip to main content
Log in

WIZARD: AI in conformational analysis

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A program which utilizes the techniques of Artificial Intelligence and Expert Systems to solve problems in the area of Conformational Analysis is described. The program searches conformational space in a systematic fashion, based on the technique known as heuristic state-space search. The program proceeds by recognizingconformational units, assigning one or moreconformational templates to each unit, andjoining them to form conformational suggestions. These suggestions arecriticized to discover logical inconsistencies, and any resulting stresses areresolved. The resulting conformational suggestions are sometimes accurate enough for immediate use, or may be further refined by a numerical program. The latter combination is shown to be quite efficient compared to purely numerical conformational search techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh U.C. and Kollman, P., QCPE Bulletin, 2 (1982) 117–145. (Gaussian 80)

    Google Scholar 

  2. Dewar, M.J.S. and Thiel, W., J. Am. Chem. Soc. 99 (1977) 4899–4917 (MNDO)

    Google Scholar 

  3. Pople, J.A. and Beveridge, D.L., J. Chem. Phys. 47 (1967) 2026–2033. (CNDO)

    Google Scholar 

  4. Wiberg, K.B. and Boyd, R.H., J. Am. Chem. Soc., 94 (1972) 8426–8430.

    Google Scholar 

  5. Burkert, U. and Allinger, N.L., A.C.S. Monograph, 177 (1982) 72–114.

    Google Scholar 

  6. Crippen, G.M., Distance Geometry and Conformational Calculations, Chemometrics Research Studies Series, 1, Research Studies Press, Wiely, 1983.

    Google Scholar 

  7. Corey, E.J. and Feiner, N.F., J. Org. Chem. 45 (1980) 757–764. (A part of LHASA limited to cyclohexane rings only.)

    Google Scholar 

  8. Cohen, N., Colin, P. and Lemoine, G., Tetrahedron 37 (1981) 1711–1721. (An excellent program, which joins simple templates with some abstraction, but does not examine intramolecular forces and strain relief directly.)

    Google Scholar 

  9. De Clercq, P.J., Tetrahedron, 40 (1984) 3717–3738. (A BASIC program limited to joining ring templates.)

    Google Scholar 

  10. Wipke, W.T. and Hahn, M., ACS Symposium Series, 306 (1986) 136–146. (A template assembly program which obtains its templates from an abbreviated X-ray data base.)

    Google Scholar 

  11. Dolata, D.P. and Carter, R.E., J. Chem. Inf. Comput. Sci. (in press).

  12. Barr, A. and Feigenbaum, E. (Eds) The Handbook of Artificial Intelligence, Vol 2., William Kaufmann, Inc., Los Altos, CA, 1982.

    Google Scholar 

  13. Liljefors, T., J. Mol. Graph. 1 (1983) 111–117.

    Google Scholar 

  14. Vinter, J.G., Davis, A. and Saunders, M., J. Comput.-Aided Mol. Design. 1 (1987) 31–51.

    Google Scholar 

  15. Jochum, C. and Gasteiger, J., J. Chem. Inf. Comput. Sci., 17 (1977) 113–117.

    Google Scholar 

  16. Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B.G., Kennard, O., Motherwell, W.D.S., Rodgers, J.R. and Watson, D.G., Acta Cryst., B 35 (1979) 2331–2339.

    Google Scholar 

  17. Murray-Rust, P. and Motherwell, S., Acta Cryst., B34 (1978) 2534–2546.

    Google Scholar 

  18. Murray-Rust, P. and Raftery, J., J. Mol. Graph, 3 (1985) 50–56.

    Google Scholar 

  19. Taylor, R., J. Mol. Graph., 4 (1986) 123–131.

    Google Scholar 

  20. Karle, I.L., Gilardi, R.D., Fratini, A.V. and Karle, J., Acta Cryst., B 25 (1969) 1469–1479.

    Google Scholar 

  21. Geise, H.J., Romers, L. and Rutten, E.W.M., Acta Cryst., B 20 (1966) 249–257.

    Google Scholar 

  22. Gylbert, L. and Carlström, D., Acta Cryst., B 33 (1977) 2833–2837.

    Google Scholar 

  23. McConnell, J.F., Cryst. Struct. Comm., 2 (1973) 459–461.

    Google Scholar 

  24. KrishnaMurthy, H.M., Bhat, T.N. and Vijayan, M., Acta Cryst., B38 (1982) 315–317.

    Google Scholar 

  25. Shen, M., Ruble, J.R. and Hite, G., Acta Cryst., B 31 (1975) 2706–2709.

    Google Scholar 

  26. Gabe, E.J. and Barnes, W.H., Acta Cryst., 16 (1963) 796–801.

    Google Scholar 

  27. Bartell, L.S. and Bradford, W.F., J. Mol. Struct., 37 (1977) 113–126.

    Google Scholar 

  28. Bhattacharjee, S.K., Chacko, K.K. and Zand R., Acta Cryst., B 35 (1979) 399–401.

    Google Scholar 

  29. Clocksin, W.F. and Mellish, C.S., Programming in PROLOG, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  30. Burkert, U. and Allinger, N.L., J. Comp. Chem., 3 (1982) 40–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolata, D.P., Leach, A.R. & Prout, K. WIZARD: AI in conformational analysis. J Computer-Aided Mol Des 1, 73–85 (1987). https://doi.org/10.1007/BF01680558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01680558

Key words

Navigation