Skip to main content
Log in

Lie algebraic canonical representations in nonlinear control systems

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

This paper is the applied counterpart to previous results [5] for linear-analytic control systems. It is mainly concerned with two canonical representations of the exponential type. They exhibit the Lie algebraic structure of the system in such a form that results on weak controllability are easily derived in an algebraic manner. The first representation is a single exponential of a canonical Lie series in Hall's basis of the Lie algebra of vector fields. The second one is a factorization in terms of simpler exponentials of Hall's basic vectors. Both of them exhibit, as canonical coefficients, an infinite set of characteristic parameters which are a minimal representation of the input paths, when no drift occurs in the system (or, equivalently, in the weak control case). The weak controllability theorem is easily derived from these results, in a purely algebraic way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki,Groupes et Algèbres de Lie, Hermann, 1972, Chaps. 2 and 3.

  2. K. T. Chen, Integration of paths. A faithful representation of paths by noncommutative formal power series,Trans. Amer. Math. Soc.,65 (1958), 163–178.

    Google Scholar 

  3. L. Comtet,Analyse Combinatoire, Vols. 1 and 2, Collection SUP, Presses Universitaires de France, 1970.

  4. M. Fliess, Un outil algébrique: les séries formelles non commutatives, Rapport de Recherche I.R.I.A. No. 139, 1975.

  5. M. Fliess, Fonctionnelles causales non-linéaires et indéterminées non-commutatives,Colloque IRIA on Méthodes Algébriques et Géométriques en Automatique Non-linéaire, 13–17 February 1978, IRIA Service Formation.

  6. M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue, An algebraic approach to nonlinear functional equations,IEEE Trans. Circuits and Systems,29 (1983).

  7. K. O. Friedrichs, Mathematical aspects of the quantum theory of fields, V,Comm. Pure Appl. Math.,6 (1953), 1–72.

    Google Scholar 

  8. F. R. Gantmacher,Matrix Theory, Vols. I and II, Chelsea, New York, 1960.

    Google Scholar 

  9. P. Hall, A contribution to the theory of groups of prime power order,Proc. London. Math. Soc. (2),36 (1933), 29–95.

    Google Scholar 

  10. G. W. Haynes and H. Hermes, Nonlinear controllability via Lie theory,SIAM J. Control Optim.,8 (1970), 450–460.

    Google Scholar 

  11. R. Hermann, On the accessibility problem in control theory, inNon-linear Differential Equations and Non-linear Mechanics (Proceedings of the International Symposium held on 31 July to 4 August, 1961), Academic Press, New York, 1963.

    Google Scholar 

  12. R. Hermann,Differential geometry and the calculus of variations, Inter-disciplinary Mathematics, vol. 17, Math. SCI Press, 1977.

  13. R. Hermann and A. H. Krener, Non-linear controllability and observability,IEEE Trans. Automat. Control,22 (1977), 728–740.

    Google Scholar 

  14. T. Huillet, A. Monin, and G. Salut, Lie algebraic representation results for nonstationary evolution operators,Math. Systems Theory,19 (1987), 205–226.

    Google Scholar 

  15. C. Lobry, Controlabilité des systèmes non-linéaires,SIAM J. Control Optim.,8 (1970), 573–605.

    Google Scholar 

  16. W. Magnus, On the exponential solution of differential equations for a linear operator,Comm. Pure Appl. Math.,7 (1954), 649–673.

    Google Scholar 

  17. D. Perrin and G. Viennot, A note on shuffle algebras, Unpublished note, 1982.

  18. R. Ree, Lie elements and an algebra associated with shuffles,Ann. of Math.,68 (1958), 210–220.

    Google Scholar 

  19. J. P. Serre,Lie Algebra and Lie Groups, Mathematical Lecture Note Series, Benjamin-Cummings, 1965.

  20. H. J. Sussmann, A product expansion for the Chen series, inTheory and Applications of Non-Linear Control Systems (C. I. Byrnes and A. Lindquist, eds.), Elsevier, New York, 1986.

    Google Scholar 

  21. H. J. Sussmann, Semi-group representations, bilinear approximations of input-output maps, and generalized inputs, inMathematical Systems Theory (G. Marchesini and S. K. Mitter, eds.), Lecture Notes on Economics and Mathematical Systems, Vol. 131, Springer-Verlag, Berlin, pp. 172–191.

  22. E. Witt, Treue Darstellung Lieschen Ringe,J. Grelle,177 (1937), 152–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huillet, T., Monin, A. & Salut, G. Lie algebraic canonical representations in nonlinear control systems. Math. Systems Theory 20, 193–213 (1987). https://doi.org/10.1007/BF01692065

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01692065

Keywords

Navigation