Skip to main content
Log in

Universal quantifiers and time complexity of random access machines

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

Let Sp(d∀) denote the class of spectra of prenex first-order sentences (with equality) withd universal quantifiers. Let NRAM(T(n)) denote the class of sets (of positive integers) accepted by Nondeterministic Random Access Machines, NRAM, (with successor as the only arithmetical operation) in timeO(T(n)) wheren is the input integer. We prove Sp(d∀) = NRAM(n d) ford ≥ 2. Moreover, each spectrum of Sp(d∀) is the spectrum of ad-universal-quantifier sentence with relation and function symbols of arityd only. Similar results hold for generalized spectra and alternating spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Chandra, D. C. Kozen and L. J. Stockmeyer, Alternation,J. Assoc. Comput. Mach. 28 (1981) 1, 114–133.

    Google Scholar 

  2. S. A. Cook, A hierarchy for nondeterministic time complexity,J. Comput. Systems Sci. 7 (1973), 343–353.

    Google Scholar 

  3. S. A. Cook and R. A. Reckhow, Time bounded Random Access Machines,J. Comput. Systems Sci. 7 (1973), 354–375.

    Google Scholar 

  4. R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets,Complexity of Computations, R. M. Karp ed., Amer. Math. Soc., Providence, (1974), 43–73.

  5. R. Fagin, A spectrum hierarchy,Z. Math. Logik. Grundlag. Math. 21 (1975), 123–134.

    Google Scholar 

  6. E. Grandjean, The spectra of first-order sentences and computational complexity,SIAM J. Comput. 13 (1984), 356–373.

    Google Scholar 

  7. N. Immerman, Number of quantifiers is better than number of tape cells,J. Comput. Systems Sci. 22 (1981), 384–406.

    Google Scholar 

  8. N. Immerman, Upper and lower bounds for first-order expressibility,J. Comput. Systems Sci. 25, 1 (1982).

    Google Scholar 

  9. N. Immerman, Languages which capture complexity classes, 15th ACM SIGACT Symp. (1983), 1–16.

  10. N. D. Jones and A. L. Selman, Turing machines and the spectra of first-order formulas with equality,J. Symb. Logic 39 (1974), 139–150.

    Google Scholar 

  11. H. R. Lewis, Complexity results for classes of quantificational formulas,J. Comput. Systems Sci. 21 (1980), 317–353.

    Google Scholar 

  12. L. Lovász and P. Gács, Some remarks on generalized spectra,Z. Math. Logik. Grundlag. Math. 23 (1977), 547–553.

    Google Scholar 

  13. J. F. Lynch, Complexity classes and theories of finite models,Mach. Systems Theory 15 (1982), 127–144.

    Google Scholar 

  14. B. Monien, Characterizations of time-bounded computations by limited primitive recursion,2nd Int. Colloq. Automata Languages Programming, Springer, Berlin (1974), 280–293.

    Google Scholar 

  15. B. Monien, About the derivation languages of grammars and machines,4th Int. Colloq. Automata Languages Programming, (1977), 337–351.

  16. P. Puklák, The observational predicate calculus and complexity of computations,Comment. Math. Univ. Carolin. 16 (1975), 395–398.

    Google Scholar 

  17. B. Scarpellini, Lower bound results on lengths of second order formulas (1984), preprint.

  18. A. Schönhage, Storage Modification Machines,SIAM J. Comput. 9 (1980), 490–508.

    Google Scholar 

  19. J. I. Seiferas, M. J. Fisher and A. R. Meyer, Separating nondeterministic time complexity classes,J. Assoc. Comput. Mach. 25 (1978), 146–167.

    Google Scholar 

  20. L. J. Stockmeyer, The polynomial-time hierarchy,Theoret. Comput. Sci. 3 (1976), 1–22.

    Google Scholar 

  21. R. Weicker, Turing machines with associative memory access,2nd Int. Colloq. Automata Languages Programming (1974), 458–472.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandjean, E. Universal quantifiers and time complexity of random access machines. Math. Systems Theory 18, 171–187 (1985). https://doi.org/10.1007/BF01699468

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01699468

Keywords

Navigation