Skip to main content
Log in

Unitary immersions of nonlinear systems

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

In this paper, we define what we call a “unitary immersion” of a nonlinear system. We observe that, for classical Hamiltonian systems, this notion contains, in some sense, the concept of “quantization.” We restrict our attention to “degree-zero unitary immersions,” where all “observation functions” must be represented by operators of the type “multiplication by a function.” We show that the problem of classifying such “degree-zero unitary immersions” of a given nonlinear system is not obvious. In some cases, we solve this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham and J. E. Marsden,Foundations of Mechanics, 2nd edn., Benjamin Cumming, 1978.

  2. B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet, Transitivity of families of invariant vector fields on the semidirect product of Lie groups,Trans. Amer. Math. Soc.,271 (1982), 525–535.

    Google Scholar 

  3. J. Dixmier,Les C* Algèbres et Leurs Représentations, Gauthier-Villars, Paris, 1969.

    Google Scholar 

  4. M. Fliess and I. Kupka, A finiteness criterion for nonlinear input-output differential systems,SIAM J. Control,21 (1983), 721–728.

    Google Scholar 

  5. Gelfand, Graev, and Vilenkin,Generalized Functions, Tome 5, Academic Press, New York, 1966.

    Google Scholar 

  6. R. Hermann,Lie Algebras and Quantum Mechanics, W. A. Benjamin, New York, 1970.

    Google Scholar 

  7. R. Hermann,Lie Groups for Physicists, Benjamin Cummings, 1966.

  8. R. Hermann,Vector Bundles in Mathematical Physics, W. A. Benjamin, New York, 1970.

    Google Scholar 

  9. E. Hewitt and K. Ross,Abstract Harmonic Analysis, Springer-Verlag, Berlin, 1963.

    Google Scholar 

  10. A. Kirillov,Eléments de la Théorie des Représentations, French transl., ed. MIR, Moscow, 1974.

    Google Scholar 

  11. A. Kirillov, Unitary representations of nilpotent Lie Groups,Uspekhi Mat. Nauk,17 (1962, 53–104.

    Google Scholar 

  12. A. Kirillov and A. Gvichiani,Théorèmes et Problèmes d'Analyse Fonctionnelle, ed. MIR, Moscow, 1979, French transl., 1982.

    Google Scholar 

  13. G. W. Mackey,Mathematical Foundations of Quantum Mechanics, Benjamin Cummings, 1963.

  14. N. Naimark and A. Stern,Théorie des Représentations des Groupes, French transl., ed. MIR, Moscow, 1979.

    Google Scholar 

  15. G. Warner,Harmonic Analysis on SemiSimple Lie Group, Springer-Verlag, New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Chargé de Recherche au CNRS.

Maître de Conférences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, J.P., Guérin, J.P. Unitary immersions of nonlinear systems. Math. Systems Theory 19, 135–153 (1986). https://doi.org/10.1007/BF01704911

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01704911

Keywords

Navigation