Skip to main content

Lie algebraic representation results for nonstationary evolution operators

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

It is shown that a nonstationary evolution equation solution admits two universal representations. The first is a canonical factorization into an infinite product of exponentials. This representation involves a nonstandard “integral type” Lie algebra from which an extended Hall set can be extracted. This result can be thought of as the formal continuous analogue of a Lazard factorization of the free monoid.

It is also shown that a second canonical representation into a single exponential is possible, thus making an earlier work of Magnus [6], continued by Michel [14], more precise. In the sequel, reverse time together with duality problems are discussed. Finally, the evolution operator for a general Lie derivative is shown to lead to tractable combinatorial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lothaire, Combinatorics on words, inEncyclopedia of Mathematics and Its Applications, Addison-Wesley, New York, 1983.

    Google Scholar 

  2. M. Fliess, Fonctionnelles causales non linéaires et indéterminées non commutatives,Bull. Soc. Math. France,109 (1981), 3–40.

    Google Scholar 

  3. T. Huillet, A. Monin, and G. Salut, Exponentiation d'algèbres de Lie dans la représentation des systèmes non linéaires, Rapport LAAS No. 85253, 1985.

  4. N. Bourbaki,Groupes et Algèbres de Lie, Hermann, 1972, Chaps. 2 and 3.

  5. G. Viennot,Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics, vol. 691, Springer-Verlag, Berlin.

  6. W. Magnus, On the exponential solution of differential equations for a linear operator,Comm. Pure Appl. Math.,7 (1955), 649–673.

    Google Scholar 

  7. T. Huillet, A. Monin, and G. Salut, Lie algebraic representations in non-linear control. Rapport Interne LAAS No. 86042 (submitted).

  8. A. Kirillov,Elements de la théorie des representations, Editions Mir, Moscow, 1974.

    Google Scholar 

  9. K. T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula,Ann. of Math.,65 (1957), 163–178.

    Google Scholar 

  10. R. Ree, Lie elements and an algebra associated with shuffles,Ann. of Math.,68 (1958), 210–220.

    Google Scholar 

  11. C. Lobry, Controlabilité des systèmes non linéaires,SIAM Journal Control Optim.,8 (1970), 573–605.

    Google Scholar 

  12. C. Lobry, Controlabilité des systèmes non linéaires, inOutils et Modèles Mathématiques pour l'Automatique, l'Analyse des Systèmes et le Traitement du Signal, vol. 1, Editions du CNRS, Paris, 1980, pp. 187–214.

    Google Scholar 

  13. R. Hermann and A. J. Krener, Nonlinear controllability and observability,IEEE Trans. Autom. Control,22 (1977), 728–740.

    Google Scholar 

  14. J. Michel, Bases des algèbres de Lie. Etude des coefficients de la formule de Campbell-Hausdorff, Thèse 3rd cycle, Orsay No. 55, 1974.

  15. C. Reuteunauer, Sur la réalisation locale des séries génératrices de rang de Lie fini,Comptesrendus des Conférence sur les méthodes algébriques et géométriques en automatique non linéaire, Paris, June 3–7, 1985.

  16. R. P. Feynman, An operator calculus having applications in quantum electrodynamics,Phys. Rev.,84 (1951), 108–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huillet, T., Monin, A. & Salut, G. Lie algebraic representation results for nonstationary evolution operators. Math. Systems Theory 19, 205–226 (1986). https://doi.org/10.1007/BF01704914

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01704914

Keywords