Abstract
Necessary and sufficient conditions are given for the existence of “paracompact realizations” of nonlinear analytic input-output maps when these are defined for positive time and when the set of control values is finite. (This work is a sequel to that of Jakubczyk and Gauthier and Bornard.) Finally, we underline, via an example, the difficulty of this problem in the case of infinitely many control values.
Similar content being viewed by others
References
M. Fliess, Realizations of nonlinear systems and abstract transitive Lie algebra,Bull. Amer. Math. Soc. (N.S.),2 (1980), 444–446.
M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives,Invent. Math.,71 (1983), 521–533.
J. P. Gauthier and G. Bornard, Existence and Uniqueness of Global realizations of analytic input-output map, CDC, Las Vegas, December 1984.
R. Hermann and A. Krener, Nonlinear controllability and observability,IEEE Trans. Automat. Control,22 (1977), 728–740.
B. Jakubczyk, Existence and uniqueness of realizations of nonlinear systems,Siam J. Control Optim.,18 (1980).
B. Jakubczyk, Local realizations of nonlinear causal operators,SIAM J. Control Optim.,24, (1986).
J. L. Kelley,General Topology, Springer-Verlag, New York, 1955.
E. H. Spannier,Algebraic Topology, McGraw Hill, New York, 1966.
M. Spivak,A Comprehensive Introduction to Differential Geometry, Publish or Perish, Berkeley, CA, 1979.
H. J. Sussmann, A generalization of closed subgroup theorem to quotients of arbitrary manifolds,J. Differential Geom.,10 (1975), 151–166.
H. J. Sussmann, Existence and uniqueness of minimal realizations of nonlinear systems,Math. Systems Theory,10 (1977), 263–284.
H. J. Sussmann, On quotient of manifolds, a generalization of the closed subgroup theorem,Bull. Amer. Math. Soc.,80 (1974), 573–575.
H. J. Sussmann, Orbits of families of vector fields and integrability of distributions,Trans. Amer. Math. Soc.,180 (1973), 171–188.
F. Celle, J. P. Gauthier, and B. Milani, Existence of realizations of nonlinear analytic inputoutput maps,IEEE Trans. Automat. Control,31 (1986), 378–381.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Celle, F., Gauthier, J.P. Realizations of nonlinear analytic input-output maps. Math. Systems Theory 19, 227–237 (1986). https://doi.org/10.1007/BF01704915
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01704915