Skip to main content
Log in

Realizations of nonlinear analytic input-output maps

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

Necessary and sufficient conditions are given for the existence of “paracompact realizations” of nonlinear analytic input-output maps when these are defined for positive time and when the set of control values is finite. (This work is a sequel to that of Jakubczyk and Gauthier and Bornard.) Finally, we underline, via an example, the difficulty of this problem in the case of infinitely many control values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fliess, Realizations of nonlinear systems and abstract transitive Lie algebra,Bull. Amer. Math. Soc. (N.S.),2 (1980), 444–446.

    Google Scholar 

  2. M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives,Invent. Math.,71 (1983), 521–533.

    Google Scholar 

  3. J. P. Gauthier and G. Bornard, Existence and Uniqueness of Global realizations of analytic input-output map, CDC, Las Vegas, December 1984.

    Google Scholar 

  4. R. Hermann and A. Krener, Nonlinear controllability and observability,IEEE Trans. Automat. Control,22 (1977), 728–740.

    Google Scholar 

  5. B. Jakubczyk, Existence and uniqueness of realizations of nonlinear systems,Siam J. Control Optim.,18 (1980).

  6. B. Jakubczyk, Local realizations of nonlinear causal operators,SIAM J. Control Optim.,24, (1986).

  7. J. L. Kelley,General Topology, Springer-Verlag, New York, 1955.

    Google Scholar 

  8. E. H. Spannier,Algebraic Topology, McGraw Hill, New York, 1966.

    Google Scholar 

  9. M. Spivak,A Comprehensive Introduction to Differential Geometry, Publish or Perish, Berkeley, CA, 1979.

    Google Scholar 

  10. H. J. Sussmann, A generalization of closed subgroup theorem to quotients of arbitrary manifolds,J. Differential Geom.,10 (1975), 151–166.

    Google Scholar 

  11. H. J. Sussmann, Existence and uniqueness of minimal realizations of nonlinear systems,Math. Systems Theory,10 (1977), 263–284.

    Google Scholar 

  12. H. J. Sussmann, On quotient of manifolds, a generalization of the closed subgroup theorem,Bull. Amer. Math. Soc.,80 (1974), 573–575.

    Google Scholar 

  13. H. J. Sussmann, Orbits of families of vector fields and integrability of distributions,Trans. Amer. Math. Soc.,180 (1973), 171–188.

    Google Scholar 

  14. F. Celle, J. P. Gauthier, and B. Milani, Existence of realizations of nonlinear analytic inputoutput maps,IEEE Trans. Automat. Control,31 (1986), 378–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celle, F., Gauthier, J.P. Realizations of nonlinear analytic input-output maps. Math. Systems Theory 19, 227–237 (1986). https://doi.org/10.1007/BF01704915

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01704915

Keywords

Navigation