ON THE EQUIVALENCE AND CONTAINMENT
PROBLEMS FOR CONTEXT-FREE LANGUAGES

TR68-19

by John Hopcroft

On the Equivalence and Containment Problems
for Context-Free Languages

by
J. E. HOPCROFT

Cornell University

ABSTRACT

Let G and Gy be context-free grammars. Necessary and sufficient conditions on Gy are
obtained for the decidability of L(Go) < L(G). Itis also shown that it is undecidable for
which Go, L(G) € L(Go) is decidable. Furthermore, given that L(G) < L(Go) is decidable
for a fixed Go, there is no effective procedure to determine the algorithm which decides
L(G) < L(Go). If L(Gp) is a regular set, L(G) = L(Go) is decidable if and only if L(Go)
is bounded. However, there exist non-regular, unbounded L(Go) for which L(G) = L(Go)
is decidable.

1. Introduction

The problem of deciding whether two context-free grammars generate the
same language is referred to as the equivalence problem for context-free
languages, and it is well known that this is a recursively undecidable problem.
On the other hand, if one of the grammars is fixed, then the problem of deciding’
whether an arbitrary grammar generates the same language as the fixed grammar
can be either decidable or undecidable depending on the fixed grammar. For
example, the equivalence problem is undecidable if the fixed grammar generates
the set =* of all finite-length strings of terminal symbols, but it is decidable if
the fixed grammar generates a finite set. .

A similar situation exists if one considers decidability of containment of one
context-free language within another. This suggests that an attempt to character-
ize the context-free languages with a decidable equivalence problem and the
context-free languages with a decidable containment problem may lend more
insight into the structure of context-free languages than the fact that the con-
tainment and equivalence problems in general are undecidable.

1n this paper it is shown that for fixed Gy, L(Gy) € L(G) is decidable if and
only if L(G,) is a boundcd language, and that it is undecidable for which G,
L(G) € L(G,) is decidable. Furthermore, there is no partial algorithm to deter-
mine which algorithm decides 1.(G) < 1(G,) for those G for which it is
decidable. That is, even il a “birdic™ tells us that for a certain Gy, L(G) < L(Gy)
is decidable, there still is no effective procedure to determine which algorithm to
usc. This does not imply that there is no “nice’ characterization of the class of

119

MATHEMATICAL SYSTEMS THEORY, Vol. 3, No. 2.
Published by Spriniger-Verlag New York Inc.

120 J. E. Hopcrorr

G, such that 1.(G) € L(G,) is decidable, and what such a characterization might
be is an interesting open question. Whatever the class, it is undecidable whether
an arbitrary context-free grammar gencrates a language in the class. Note that
there are many classes with this latter property, e.g., the deterministic context-
free languages.

We also consider the equivalence problem and obtain the following partial
results. If L(G,) is regular, then L(G,) = L(G) is decidable if and only it L(G,)
is bounded. However, there exist context-free languages which are neither
regular nor bounded but for which equivalence is dccidable.

2. Definitions and Notations

In this section we recall some of the basic definitions and notation used in
discussing context-frec grammars, finite automata and Turing machines.

A context-free grammar (cfg) G is a system (Vy, V¢, P, S), where Vy and V.
are finite sets (of variables and terminals), P is a finite set (of productions) of the
form A — a, Aisin Vy, aisin (Fy U V7)*, and S (the start symbol) is in V.

If A — Bis in P, then for each «, and .« in (Vy U Vy)*, we write «;Aa,
= a;Bay. If oy = ay, 0y = a3, * * +, a,_; = a,, then we write a;, =* a,. The
language generated by G, denoted by L(G), is {x| x in V¥, § =* x}.

A finit¢ automaton (fa) M is a system (K, Z, 8, gy, F), where K and Z are
finite sets (of states and inputs respectively), 8: KxE — K, q, is in K (the start
state) and F <= K (the set of final states). We extend 8 to KxZ* as follows. For
each ¢ in K, a in Z and x in ¥, §(q, €) = q and §(q, xa) = §(8(q, x), a). The
language accepted by M, denoted by T(M), is the set {x] x in Z*, 8(q,, x) in F}.
A set is regular if it is the set accepted by some finite automaton.

For L < Z*, L is bounded if there exist wy, wy, * * -, w, in Z* such that
L<cwinwd---wk

A Turing machine is a system {K, £, 8, qo}, where K is a finite set (of states),
X is a finite set (of tape symbols) which always contains the blank symbol B,
8: KxX — Kx(E—-{B})x{L, R} and q, is in K (the start state). If 8(q, a)
= (p, b, L), then for cach x; and x, in X* and cach ¢ in X, we write x,cqax,
b x, pcbx,. If 8(q, a) = (p, b, R), then for each x, and x, in Z* we write x,qax,
F x,bpx,. Furthermore, we write x,g F x,gB. If o F oy ay Fay, = -+,
«,_, F «,, we write «; F* «,. The language accepted by M, denoted by T(M), is
the set {x| x in (E—={B))*, gox F* «, and for no «' does a F a'}. If gox F «,
ay Fag, +* +, &,y Fa, for x in (E—{B})* and if for no « does «, | «, then
the string gox # oy # ay # * * * #a,_; #a, is said to be a valid computation
of M. The set of invalid computations of M is the complement with respect to
(B U {#})* of the set of valid computations of M.

3. Results

The first result is concerned with the class of grammars G, such that
L(G) = L(G,) is decidable.

THEOREM 3.1. It is undecidable for an arbitrary context-free grammar G,
whether the containment for fixed G,, L(G) < L(G,), is decidable for arbitrary G.

On the Equivalence and Containment Problems for Context-Free Languages 121

Proof. Let M be a Turing machine which accepts a nonrecursive set. Given
an arbitrary Turing machine M}, we can cllectively construct M such that
T(M,) = T(M) if M; halts on € input, and T(M;) = & if M; does not halt on €
input. Let Ly, be the st of all invalid computations of M. It is known that I,,,
is a ¢f/ for cach M. For arbitrary clg G, if T(M;) = ¢ and Ly, = X*, then
L(G) < Ly, is decidable. If T(M}) # o, then T(M,) is a nonrecursive set. Now,
if L(G) € Ly, is dccidable, then 7(M,) could be ecnumerated as follows. Let
Xy, X3, * * - be an enumeration of X*. For each x; we can effectively construct a
cfg G, generating gox; # X*. Now x;isin 7(M,) if and only if gox;# £* = Ly,
Thus if T(M;) # @, then L(G) € Ly, must be undecidable for arbitrary cfg G.
Since T(M,) = 2 if and only if M| halts on € input, and since M; halting on €
input is undecidable, the theorem follows.

Theorem 3.1 suggests the following question. Is there a simple property of
those context-free languages L such that L(G) < L is decidable?

We note in passing that the result in Theorem 3.1 could also be obtained
from the following thecorem of Greibach [1]. Let P be a nontrivial property on
the context-free languages preserved by inverse gsm, union with {e} and inter-
section with regular sets. If P is true for all regular scts, then P is undccidable.
However, it appears to be as difficult to show that the property P defined by
“P(L) = 1if and only if L(G) < L is decidable” is nontrivial as it is to cstab-
lish the result directly.

The next result shows that even for those G, for which we know L(G)
€ L(G,) is decidable, we still may not be ableto decide which algorithm to use.

THEOREM 3.2. Given that L(G) < L(G,) is decidable for some fixed G,
there is no effective procedure to determine the appropriate algorithm.

Proof. Given an arbitrary Turing machine M|, we can cffectively construct
M, such that T(M;) = {¢} if M| halts on € input, and T(M;) = o if M does not
halt on € input. Let Ly, be the set of invalid computations of M. Now L,,, is
either * or £* with one sentence deleted. In either case L(G) € Ly, is decidable.
However, if we could determine which algorithm to use, we could determine
whether M| halts on e input.

It is known [2] that L(G,) < L(G) is decidable for arbitrary cfg G if L(G,)
is a bounded cf/. The next result shows that L(G,) bounded is both necessary
and sufficient for the decidability of L(G,) < L(G) for arbitrary cfg G.

First we prove the following technical lemma.

LEMMA 3.1. Let M = (M, Z, 8, qo, F) be a finite automaton. Then either
(1) T(M) is bounded, or (2) there existaand b inZ, a # b, x,, x5, x3 and x4 in Z*
and p in K such that &(qy, x,) = p, 8(p, ax,) = p, 8(p, bx;) = p and 3(p, x,)
is in F.

Proof. Assume that the lemma is truc for all finite automata of k states or
fewer. Let M = (K, Z, 8, qo, F) be a finite automaton with k+ 1 states which
accepts a nonempty set. Assume that Condition 2 of the lemma is not satisfied.
Then for at most one @ in Z docs there cxist an x in X* such that 8(q,, ax) = g,.
Furthermore, ax is unique if we require that 8(q,,) = g, for no initial segment
y. For each a; in Z, let M,, be the & state finite automaton obtained from M by
deleting the state g, and all transitions involving g,, and using &(¢,, a;) as the

122 J. E. HOPCROFT

start state. Now, T(M) = (@x)* (Ua, inx @T(M,) if go is not in F, and (ax)*
(Uarinz a,T(M,)) U (ax)* if g is in F. By the induction hypothesis, T(M,) is a
bounded language for each a, in . But a finite number of unions and produets
of bounded languages is a bounded language.

THEOREM 3.3. For a fixed ¢f{ L and an arbitrary cfg G,L < L(G) is
decidable if and only if L is bounded.

Proof. The “if " portion has alrcady been established {2]. Thus we need only
consider the “only if.” Assume that L is not bounded. Let G" = (Vy, Vr, P, S)
be a cfg in Chomsky normal form generating L. Without loss of generality,
assume that there exists an 4 in Yy such that 4 =* x,4x; and 4 =* x,A4x,,
where {x,, x;}* is not bounded. (To see this, assume for all grammars in
Chomsky normal form with k or fewer nonterminals that cither the language
generated is bounded, or there exists a nonterminal A4 such that 4 =* x;Ax;
and A =* x;Axg, where cither {x,, x;}* or {x3, x,}* is not bounded. The
assumption is trivially true for k = 1. Let G = (Vy, Vy, P, S) be a cfg in
Chomsky normal form with £+ 1 nonterminals. For each 4 in Vy and x; in £*,
1<i<4, such that A =*x,Ax, and A =* x,4x,, assume that {x;, x,}* and
{x3. x4}* arc bounded. Each derivation is of the form S=*x,8x, =>xABx,
=% X, X,X3X, Or S =* x,Sx; = x, X, X3, where A =* x,, B =* x; and S does not
appear in the derivations of x; and x5 from A und B. Let L, == {x,] S =*x,5x3};
L, is regular and L, = L}. By an argument similar to that used in Lemma 3.1,
either L, is bounded or there exist y, and y, in {x,| S=>* x;Sx;} such that
{1, y2;* is not bounded; similarly for L, = {x3] S =* x,Sx,}. By the inductive
hypothesis, L, = {x,] A=*x,} and L = {x;] B=>* x;} are bounded. Let
Lus = LyL,LzL,. Now L(G) is contained in the union of L;{x,| S — x,;}L;
with the union of L5 over all A and Bin Vy—{S}. Thus L(G) is bounded.)

Since {x,, x;}* is not bounded, by Lemma 3.1 we can write {x,, x;}*
= z,{az,, bz;}*z;, where a # b. Let z, z¢ and z, be such that S=>*z,4z; and
A =*z, Let R = zsz,{az,azy, az,bzy}*bziazyzyze{xs, x4}*z,. Let h be the
homomorphism of {0, 1}* into X* dcfincd by A(0) = az,az, and (1) = az,bz,.
Now given a cfg Gy, there is an effective procedure for constructing a cfg G,
generating 252 ML(G)Whzyaz,252,0x5, xa}*2, W R. Now if L(G)) = {0, 1}*,
then L(G,) = X* and L € L(G,). If L(G,) # {0, 1}*, then L(G,) does not
contain R and thus L is not contained in L(G,). Since I(G,) = {0, 1} * is unde-
ciduble and since L € L(G,) if and only if L(G,) = {0, }*, L = L(G)) is
undecidable.

We now consider the equivalence problem. Again, it is known [2] that
L(Gy) = L(G) is decidable for arbitrary cfg G if L(Go) is bounded. We shall
now show that if L(G,) is regular, then L(Go) = L(G) is decidable if and only if
L(G,) is bounded. Finally we shall show that there exists a non-bounded, non-
regular ¢f£ L(G,) such that L(G,) = L(G) is decidable for arbitrary cfg G.

LEMMA 3.2. Let R be a regular set which is not bounded. Then for an arbitrary
context-free grammar G, L((7) R is undecidable.

Proof. Let M = (K, X, d, go, I) bc the minimum state finite automaton
accepling R. By Lemma 3.1 there exist @ and bin X witha # b, xand yin X*
and p in K such that §(p, ax) = p and 8(p, by) = p. Furthermore, there exist w

On the Equivalence and Containment Problems for Context-Free Languages 123

and z in =* such that 8(gq, w) = p and 8(p, z) in F. Let R, = {w} {ax, by}*{z};
now R, € R. Thus R=R, V(RN R). Let G = (Vy, {0, 1}, P, S) be an
arbitrary context-free grammar with terminal symbols 0 and 1 and let & be the
homomorphism of {0, 1}* into £* defincd by /(0) = ax and h(1) = by. From G
we can effectively construct a context-free grammar G’ generating {wH(L(G)){z}
U (RN R,). Now L(G’) = R if and only if L(G) = {0, 1}*. Thus if L(G') =R
is decidable, then L(G) = {0, 1}* is decidable. But L(G) = {0, 1}* is undecidable
and thus L(G’) = R is undccidable.

In [2] it was shown that for any bounded context-free language L and
arbitrary context-free grammar G, L(G) < L and L < L(G) are decidable and
. thercfore L(G) = L is decidable. We state the following theorem.

THEOREM 3.4. For a fixed regular set R and arbitrary context-free
grammar G, L(G) = R is decidable if and only if R is bounded.

From the above thecorem, one might suspect that for a fixed context-free
grammar G, and arbitrary context-free grammar G, L(Gy) = L(G) is decidable
if and only if L(G,) is bounded. However, the following theorem shows that this
is not true.

THEOREM 3.5. For an arbitrary context-free grammar G, L(G) = {w # wR|
w in {0, 1}*} is decidable.

Proof. Let G = (Vy, Vr, P, S) be a context-free grammar. Without loss of
generality, assume that for each 4 in Vy, A # S, there exist x,, x;, X3, X, and
x5 in V¥, x4 and x5 not both ¢, such that

(i) S =* x;4xs,
(i) A =* x;Axy,
(iii) A =* x3.

Now for each 4 in Vy and x5 in V7 such that 4 =* x3, X, is in (Ve—={#))*{#}
(Vr—{#))*, for otherwise a sentence not in L(G) could be generated. (Clearly
if x, contains two or more #’s, then a sentence not in L(G) could be generated.
If x; is in (E—{#})*, then S =* x,Axs =* x,x}x3x3xs, n>0, where cither xy,
X2, X4 OF x5 contains #. But then x,X3x3x5xs can be in L(G) for at most one
value of n.) Thus at most one nonterminal can appear in any linc of a derivation,
which implies that each production in P must be of the form At or A—t,Bt,,
with A and Bin V. tin {0, 1}* » {0, 1}* and ¢ and 1, in {0, 1}*. ’

For each 4 in Vy, find an x (call it x,), such that 4 =* x,. Now x, must be
of the form x, # x®x® or x,x, # x§, where x, and x, are in {0, 1}*. (Note that
it x, = x, # x%x%, then 4 can appear only in sentential forms of the format
x3x24x%, for otherwise a sentence not in L could be generated.) Now L(G) € L
if and only if

(i) for each production A—t, = x; # BB if x, = x, # x[x§ and
t = x,x3 # xXif x, = x,x, # x{ for some x; in {0, 1}*;

(ii) for cach production 4 —1{Bt,, t|xgl; = X3 # xBxRif x, = x; # xPx5,

and fxyly = XaXy Ay, = Xy e AT for some xy in {0, 1}*,

To determine whether . € L(G), consider the grammar G =Vn Vi P,
S), where A->yB is in P"if A->yBy' is in P, and A—y isin P if A—>p # y"is in

124 J. E. Horcrorr

P. Given that L(G) € L, L < L(G) if and only if L(G') = {0, 1}*. But there
exists an eflective procedure for finding a finite automaton which accepts
L(G"), and thus for determining whether L(G') = {0, 1}*. Hence L = L(G) is
decidable.

REFERENCES

[1] S. Grewach, A nolc on undecidable propertics of formal languages. SDC Document
TM-738/038/00, August 1967.

[2] S. GinsBURG and E. H. SPaNiER, Bounded aLcoL-like languages, Trans. Amer. Math. Soc.
113 (1964), 333-368.

(Received 21 April 1968)

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif

