Skip to main content
Log in

Quasi-optimal upper bounds for simplex range searching and new zone theorems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper presents quasi-optimal upper bounds for simplex range searching. The problem is to preprocess a setP ofn points in ℜd so that, given any query simplexq, the points inPq can be counted or reported efficiently. Ifm units of storage are available (n <m <n d), then we show that it is possible to answer any query inO(n 1+ɛ/m 1/d) query time afterO(m 1+ɛ) preprocessing. This bound, which holds on a RAM or a pointer machine, is almost tight. We also show how to achieveO(logn) query time at the expense ofO(n d) storage for any fixed ɛ > 0. To fine-tune our results in the reporting case we also establish new zone theorems for arrangements and merged arrangements of planes in 3-space, which are of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P. Intersection and decomposition algorithms for arrangements of curves in the plane, Ph.D. Thesis, New York University, 1989.

  2. Agarwal, P. K., Partitioning arrangements of lines, II: applications,Discrete Comput. Geom. 5 (1990), 533–573.

    Article  MATH  MathSciNet  Google Scholar 

  3. Agarwal, P., and Sharir, M., Applications of a new space partitioning scheme, in preparation, 1991.

  4. Aronov, B., and Sharir, M., Triangles in space, or building (and analyzing) castles in the air,Combinatorica 10 (1990), 137–173.

    Article  MATH  MathSciNet  Google Scholar 

  5. Chazelle, B., Lower bounds on the complexity of polytope range searching,J. Amer. Math. Soc. 2 (1989), 637–666.

    Article  MATH  MathSciNet  Google Scholar 

  6. Chazelle, B., Edelsbrunner, H., Guibas, L. J., and Sharir, M., A singly-exponential stratification scheme for real semi-algebraic varieties and its applications,Theoret. Comput. Sci. 84 (1991), 77–105.

    Article  MATH  Google Scholar 

  7. Chazelle, B., and Friedman, J., A deterministic view of random sampling and its use in geometry,Combinatorica 10 (1990), 229–249.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chazelle, B., and Friedman, J., Point location among hyperplanes, Manuscript, 1991.

  9. Chazelle, B., and Palios, L., Triangulating a nonconvex polytope,Discrete Comput. Geom. 5 (1990), 505–526.

    Article  MATH  MathSciNet  Google Scholar 

  10. Chazelle, B., and Welzl, E., Quasi-optimal range searching in spaces of finite Vapnik Chervonenkis dimension,Discrete Comput. Geom. 4 (1989), 467–489.

    Article  MATH  MathSciNet  Google Scholar 

  11. Clarkson, K. L., New applications of random sampling in computational geometry,Discrete Comput. Geom. 2 (1987), 195–222.

    Article  MATH  MathSciNet  Google Scholar 

  12. Clarkson, K. L., A randomized algorithm for closest-point queries,SIAM J. Comput. 17 (1988), 830–847.

    Article  MATH  MathSciNet  Google Scholar 

  13. Clarkson, K. L., Edelsbrunner, H., Guibas, L. J., Sharir, M., and Welzl, E., Combinatorial complexity bounds for arrangements of curves and surfaces,Discrete Comput. Geom. 5 (1990), 99–160.

    Article  MATH  MathSciNet  Google Scholar 

  14. Clarkson, K. L., and Shor, P., Applications of random sampling in computational geometry, II,Discrete Comput. Geom. 4 (1989), 387–421.

    Article  MATH  MathSciNet  Google Scholar 

  15. Cole, R., Searching and storing similar lists,J. Algorithms 7 (1986), 202–220.

    Article  MATH  MathSciNet  Google Scholar 

  16. Cole, R., and Yap, C. K., Geometric retrieval problems,Inform, and Control 63 (1984), 39–57.

    Article  MATH  MathSciNet  Google Scholar 

  17. Edelsbrunner, H.,Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.

    MATH  Google Scholar 

  18. Edelsbrunner, H., The upper envelope of piecewise linear functions: tight bounds on the number of faces,Discrete Comput. Geom. 4 (1989), 337–343.

    Article  MATH  MathSciNet  Google Scholar 

  19. Edelsbrunner, H., Guibas, L. J., Hershberger, I, Seidel, R., Sharir, M., Snoeyink, J., and Welzl, E., Implicitly representing arrangements of lines or segments,Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 56–69.

  20. Edelsbrunner, H., Guibas, L. J., and Sharir, M., The upper envelope of piecewise linear functions: Algorithms and applications,Discrete Comput. Geom. 4 (1989), 311–336.

    Article  MATH  MathSciNet  Google Scholar 

  21. Edelsbrunner, H., Guibas, L. J., and Sharir, M., The complexity and construction of many faces in arrangements of lines and of segments,Discrete Comput. Geom. 5 (1990), 161–196.

    Article  MATH  MathSciNet  Google Scholar 

  22. Edelsbrunner, H., Seidel, R., and Sharir, M., New proofs of the zone theorem for arrangement of hyperplanes, in preparation, 1991.

  23. Edelsbrunner, H., and Welzl, E., Halfplanar range search in linear space and O(n0.695) query time,Inform. Process. Lett. 23 (1986), 289–293.

    Article  MATH  Google Scholar 

  24. Guibas, L. J., and Seidel, R., Computing convolutions by reciprocal search,Discrete Comput. Geom. 2 (1987), 175–193.

    Article  MATH  MathSciNet  Google Scholar 

  25. Haussler, D., and Welzl, E., Epsilon nets and simplex range queries,Discrete Comput. Geom. 2 (1987), 127–151.

    Article  MATH  MathSciNet  Google Scholar 

  26. Matoušek, J., More on cutting arrangements and spanning trees with low crossing number, Tech. Report B-90-2, FB Mathematik, FU Berlin, 1990.

    Google Scholar 

  27. Matoušek, J., Efficient partition trees, KAM Series Tech. Report 90-175, Charles University, 1990.

  28. Matoušek, J., Cutting hyperplane arrangements,Discrete Comput. Geom. 6 (1991), 385–406.

    Article  MATH  MathSciNet  Google Scholar 

  29. Matoušek, J., Approximations and optimal geometric divide-and-conquer, KAM Series Tech. Report 90-174, Charles University, 1990. Also to appear inProc. 23rd ACM Symp. on the Theory of Computing, 1991.

  30. Mehlhorn, K.,Data Structures and Algorithms, 3: Multidimensional Searching and Computational Geometry, Springer-Verlag, Heidelberg, 1984.

    Google Scholar 

  31. Pach, J., and Sharir, M., The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates,Discrete Comput. Geom. 4 (1989), 291–309.

    Article  MATH  MathSciNet  Google Scholar 

  32. Paterson, M., and Yao, F. F., Point retrieval for polygons,J. Algorithms 7 (1986), 441–447.

    Article  MATH  MathSciNet  Google Scholar 

  33. Pollack, R., Sharir, M., and Sifrony, S., Separating two simple polygons by a sequence of translations,Discrete Comput. Geom. 3 (1988), 123–136.

    Article  MATH  MathSciNet  Google Scholar 

  34. Willard, D. E., Polygon retrieval,SIAM J. Comput. 11 (1982), 149–165.

    Article  MATH  MathSciNet  Google Scholar 

  35. Yao, F. F., A 3-space partition and its applications,Proc. 15th Ann. ACM Symp. on the Theory of Computing, 1983, pp. 258–263.

  36. Yao, A. C, and Yao, F. F., A general approach tod-dimensional geometric queries,Proc. 17th Ann. ACM Symp. on the Theory of Computing, 1985, pp. 163–168.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Mikhail J. Atallah.

A preliminary version of this paper has appeared in theProceedings of the Sixth Annual ACM Symposium on Computational Geometry, June 1990, pp. 23–33. Work on this paper by Bernard Chazelle has been supported by NSF Grant CCR-87-00917 and NSF Grant CCR-90-02352. Work on this paper by Micha Sharir has been supported by Office of Naval Research Grant N00014-87-K-0129, by National Science Foundation Grants DCR-83-20085 and CCR-8901484, and by grants from the U.S.-Israeli Binational Science Foundation, the NCRD—the Israeli National Council for Research and Development, and the Fund for Basic Research administered by the Israeli Academy of Sciences. Work by Emo Welzl has been supported by Deutsche Forschungsgemeinschaft Grant We 1265/1–2. Micha Sharir and Emo Welzl have also been supported by a grant from the German-Israeli Binational Science Foundation. Last but not least, all authors thank DIMACS, an NSF Science and Technology Center, for additional support under Grant STC-88-09648.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chazelle, B., Sharir, M. & Welzl, E. Quasi-optimal upper bounds for simplex range searching and new zone theorems. Algorithmica 8, 407–429 (1992). https://doi.org/10.1007/BF01758854

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01758854

Key words

Navigation