Abstract
In this paper we give efficient parallel algorithms for solving a number of visibility and shortest-path problems for simple polygons. Our algorithms all run inO(logn) time and are based on the use of a new data structure for implicitly representing all shortest paths in a simple polygonP, which we call thestratified decomposition tree. We use this approach to derive efficient parallel methods for computing the visibility ofP from an edge, constructing the visibility graph of the vertices ofP (using an output-sensitive number of processors), constructing the shortest-path tree from a vertex ofP, and determining all-farthest neighbors for the vertices inP. The computational model we use is the CREW PRAM.
Similar content being viewed by others
References
K. Abrahamson, N. Dadoun, D. A. Kirpatrick, and T. Przytycka, A Simple Parallel Tree Contraction Algorithm, Technical Report 87-30, Dept. of Computer Science, University of British Columbia, 1987.
P. K. Agarwal, A. Aggarwal, B. Aronov, S. Rao Kosaraju, B. Scheiber, and S. Suri, Computing External-Farthest Neighbors in a Simple Polygon,Discrete Appl. Math.,31(2), 1991, 97–111.
A. Aggarwal, B. Chazelle, L. Guibas, C. Ó'Dúnlaing, and C. Yap, Parallel Computational Geometry,Algorithmica,3(3), 1988, 293–328.
A. Aggarwal and J. K. Park, Parallel Searching in Multidimensional Monotone Arrays, manuscript, 1989.
R. J. Anderson and G. L. Miller, Deterministic Parallel List Ranking, inThird Aegan Workshop on Computing (AWOC 88) (J. H. Ref, ed.), Lecture Notes in Computer Science, Vol. 319, Springer-Verlag, Berlin, 1988, pp. 81–90.
M. J. Atallah and D. Z. Chen, Optimal Parallel Algorithm for Visibility of a Simple Polygon from a Point,Proc. 5th ACM Symp. on Computational Geometry, 1989, pp. 114–123.
M. J. Atallah, R. Cole, and M. T. Goodrich, Cascading Divide-and-Conquer: A Technique for Designing Parallel Algorithms,SIAM J. Comput.,18(3), 1989, 499–532.
M. J. Atallah and M. T. Goodrich, Efficient Parallel Solutions to Some Geometric Problems,J. Parallel Distrib. Comput.,3(4), 1986, 492–507.
M. J. Atallah and S. R. Kosaraju, An Efficient Parallel Algorithm for the Row Minima of a Totally Monotone Matrix,Proc. 2nd SIAM-ACM Symp. on Discrete Algorithms, 1991, pp. 394–403.
D. Avis and G. T. Toussaint, An Optimal Algorithm for Determining the Visibility of a Polygon from an Edge,IEEE Trans. Comput.,30, 1981, 910–914.
G. Bilardi and A. Nicolau, Adaptive Bitonic Sorting: An Optimal Parallel Algorithm for Shared Memory Machines,SIAM J. Comput.,18(2), 1989, 216–228.
B. Chazelle, A Theorem on Polygon Cutting with Applications,Proc. 23rd IEEE Symp. on Foundations of Computer Science, 1982, pp. 339–349.
B. Chazelle, Intersecting is Easier than Sorting,Proc. 16th ACM Symp. on Theory of Computing, 1984, pp. 125–134.
B. Chazelle, Triangulating a Simple Polygon in Linear Time, Report CS-TR-264-90, Princeton University, May 1990.
B. Chazelle and L. J. Guibas, Fractional Cascading: I. A Data Structuring Technique,Algorithmica,1(2), 1986, 133–162.
B. Chazelle and L. J. Guibas, Visibility and Intersection Problems in Plane Geometry, Report CS-TR-167-88, Princeton University, 1988.
R. Cole and U. Vishkin, Approximate Scheduling, Exact Scheduling, and Applications to Parallel Algorithms,Proc. 27th IEEE Symp. on Foundations of Computer Science, 1986, pp. 478–491.
R. Cole and U. Vishkin, Optimal Parallel Algorithms for Expression Tree Evaluation and List Ranking, inThird Aegean Workshop on Computing (AWOC 88) (J. H. Reif, ed.), Lecture Notes in Computer Science, Vol. 319, Springer-Verlag, Berlin, 1988, pp. 91–100.
R. Cole and O. Zajicek, An Optimal Parallel Algorithm for Building a Data Structure for Planar Point Location,Parallel Distrib. Comput.,8, 1990, 280–285.
H. Edelsbrunner,Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
H. Edelsbrunner, H. A. Maurer, F. P. Preparata, A. L. Rosenberg, E. Welzl, and D. Wood, Stabbing Line Segments,BIT,22, 1982, 274–281.
H. ElGindy and D. Avis, A Linear Algorithm for Computing the Visibility Polygon from a Point,J. Algorithms,2, 1981, 186–197.
H. ElGindy and M. T. Goodrich, Parallel Algorithms for Shortest Path Problems in Polygons,The Visual Computer,3(6), 1988, 371–378.
M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan; Triangulating a Simple Polygon,Inform. Process Lett.,7(4), 1978, 175–179.
M. T. Goodrich, Triangulating a Polygon in Parallel,J. Algorithms,10, 1989, 327–351.
M. T. Goodrich, Intersecting Line Segments in Parallel with an Output-Sensitive Number of Processors,Proc. ACM Symp. on Parallel Algorithms and Architectures, 1989, pp. 127–137.
L. J. Guibas and J. Hershberger, Optimal Shortest Path Queries in a Simple Polygon,J. Comput. System Sci,39, 1989, 126–152.
L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear Time Algorithms for Visibility and Shortest Path Problems Inside Simple Polygons,Proc. 2nd ACM Symp. on Computational Geometry, 1986, pp. 1–13.
L. J. Guibas, L. Ramshaw, and J. Stolfi, A Kinetic Framework for Computational Geometry,Proc. 24th IEEE Symp. on Foundations of Computer Science, 1983, pp. 100–111.
J. Hershberger, Finding the Visibility Graph of a Simple Polygon in Time Proportional to Its Size,Algorithmica,4, 1989, 141–155.
S. R. Kosaraju and A. L. Delcher, Optimal Parallel Evaluation of Tree-Structured Computations by Raking, inThird Aegean Workshop on Computing (AWOC 88) (J. H. Rief, ed.), Lecture Notes in Computer Science, Vol. 319, Springer-Verlag, Berlin, 1988, pp. 101–110.
C. P. Kruskal, L. Rudolph, and M. Snir, The Power of Parallel Prefix,Proc. Internat. Conf. on Parallel Processing, 1985, pp. 180–185.
R. E. Ladner and M. J. Fischer, Parallel Prefix Computation,J. Assoc. Comput. Mach.,27, 1980, 831–838.
D. T. Lee and F. P. Preparata, Euclidean Shortest Paths in the Presence of Rectilinear Barriers,Networks,14, 1984, 393–410.
U. Manber,Introduction to Algorithms: A Creative Approach, Addison-Wesley, Reading, MA, 1989.
G. L. Miller and J. H. Reif, Parallel Tree Contraction and Its Applications,Proc. 26th IEEE Symp. on Foundations of Computer Science, 1985, pp. 478–489.
D. E. Muller and F. P. Preparata, Finding the Intersection of Two Convex Polyhedra,Theoret. Comput. Sci.,7(2), 1978, 217–236.
M. H. Overmars and J. Van Leeuwen, Maintenance of Configurations in the Plane,J. Comput. System Sci,23, 1981, 166–204.
F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.
C. Rüb, Parallel Line Segment Intersection Reporting, manuscript, 1989.
Y. Shiloach and U. Vishkin, Finding the Maximum, Merging, and Sorting in a Parallel Computation Model,Algorithms,2, 1981, 88–102.
D. D. Sleator and R. E. Tarjan, A Data Structure for Dynamic Trees,J. Comput. System Sci,26, 1983, 362–391.
J. Stolfi, Oriented Projective Geometry,Proc. 3rd ACM Symp. on Computational Geometry, 1987, pp. 76–85.
S. Suri, Computing Geodesic Furthest Neighbours in Simple Polygons,J. Comput. System Sci,39, 1989, 220–235.
R. Tamassia and J. S. Vitter, Optimal Parallel Algorithms for Transitive Closure and Point Location in Planar Structures,Proc. ACM Symp. on Parallel Algorithms and Architectures, 1989, pp. 399–408.
R. E. Tarjan,Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.
R. E. Tarjan and U. Vishkin, Finding Biconnected Components and Computing Tree Functions in Logarithmic Parallel Time,SIAM J. Comput.,14, 1985, 862–874.
R. E. Tarjan and C. J. Van Wyk, AnO(n log logn) Time Algorithm for Triangulating Simple Polygons, Report CS-TR-052-86, Princeton University, 1986.
H. Wagner, Optimally Parallel Algorithms for Convex Hull Determination, unpublished manuscript, September 1985.
C. K. Yap, Parallel Triangulation of a Polygon in Two Calls to the Trapezoidal Map,Algorithmica,3, 1988, 279–288.
Author information
Authors and Affiliations
Additional information
Communicated by Mikhail J. Atallah.
This research was announced in preliminary form in theProceedings of the 6th ACM Symposium on Computational Geometry, 1990, pp. 73–82. The research of Michael T. Goodrich was supported by the National Science Foundation under Grants CCR-8810568 and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092.
Rights and permissions
About this article
Cite this article
Goodrich, M.T., Shauck, S.B. & Guha, S. Parallel methods for visibility and shortest-path problems in simple polygons. Algorithmica 8, 461–486 (1992). https://doi.org/10.1007/BF01758856
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01758856