Skip to main content
Log in

Parallel computation of disease transforms

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Distance transforms are an important computational tool for the processing of binary images. For ann ×n image, distance transforms can be computed in time\(\mathcal{O}\)(n) on a mesh-connected computer and in polylogarithmic time on hypercube related structures. We investigate the possibilities of computing distance transforms in polylogarithmic time on the pyramid computer and the mesh of trees. For the pyramid, we obtain a polynomial lower bound using a result by Miller and Stout, so we turn our attention to the mesh of trees. We give a very simple\(\mathcal{O}\)(logn) algorithm for the distance transform with respect to theL1-metric, an\(\mathcal{O}\)(log2n) algorithm for the transform with respect to theL-metric, and find that the Euclidean metric is much more difficult. Based on evidence from number theory, we conjecture the impossibility of computing the Euclidean distance transform in polylogarithmic time on a mesh of trees. Instead, we approximate the distance transform up to a given error. This works for anyL k -metric and takes time\(\mathcal{O}\)(log3n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn, editor,Models for the Perception of Speech and Visual Form, pages 362–380, MIT Press, Cambridge, Mass., 1967.

    Google Scholar 

  2. A. Rosenfeld and J. L. Pfalz. Sequential operations in digital picture processing.Journal of the ACM,13(4):471–494, October 1966.

    Article  MATH  Google Scholar 

  3. P.-E. Danielsson. A new shape factor.Computer Graphics and Image Processing,7:292–299, 1978.

    Article  Google Scholar 

  4. T. Matsuyama and T.-Y. Phillips. Digital realization of the labeled Voronoi diagram and its application to closed boundary detection. InProc. Seventh International Conference on Pattern Recognition, pages 478–480, 1984.

  5. M. A. Fischler and P. Barrett. An iconic transform for sketch completion and shape abstraction.Computer Vision, Graphics, and Image Processing,13:334–360, 1980.

    Article  Google Scholar 

  6. P.-E. Danielsson. Euclidean distance mapping.Computer Graphics and Image Processing,14:227–248, 1980.

    Article  Google Scholar 

  7. C. Arcelli and G. Sanniti di Baja. A width-independent fast thinning algorithm.IEEE Transactions on Pattern Analysis and Machine Intelligence,7(4):463–474, July 1985.

    Article  Google Scholar 

  8. C. Arcelli and G. Sanniti di Baja. Computing Voronoi diagrams in digital pictures.Pattern Recognition Letters,4:383–389, 1986.

    Article  Google Scholar 

  9. U. Montanari. A method for obtaining skeletons using a quasi-euclidean distance.Journal of the ACM,15(4): 600–624, October 1968.

    Article  Google Scholar 

  10. G. Borgefors. Distance transformations in arbitrary dimensions.Computer Vision, Graphics, and Image Processing,27:321–345, 1984.

    Article  Google Scholar 

  11. S. L. Tanimoto. A pyramidal approach to parallel processing. InProc. 1983 International Symposium on Computer Architecture, pages 421–429, 1983.

  12. L. Uhr.Algorithm-Structured Computer Arrays and Networks. Academic Press, Orlando, Fla., 1984.

    MATH  Google Scholar 

  13. L. Uhr, editor.Parellel Computer Vision. Academic Press, Orlando, Fla., 1987.

    Google Scholar 

  14. C. R. Dyer and A. Rosenfeld. Triangle cellular automata.Information and Control,48:54–69, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. R. Dyer. A VLSI pyramid machine for hierarchical parallel image processing. InProc. IEEE Conference on Pattern Recognition and Image Processing, pages 381–386, 1981.

  16. R. Miller and Q. F. Stout. Pyramid computer algorithms for determining geometric properties of images. InProc. First Symposium on Computational Geometry, pages 263–271, 1985.

  17. R. Miller and Q. F. Stout. Data movement techniques for the pyramid computer.SIAM Journal on Computing,16(1):38–60, February 1987.

    Article  MATH  MathSciNet  Google Scholar 

  18. Q. F. Stout. Pyramid computer solutions of the closest pair problem.Journal of Algorithms,6:200–212, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. T. Leighton. New-lower bound techniques for VLSI. InProc. 22nd Symposium on Foundations of Computer Science, pages 1–12, 1981.

  20. V. K. Prasanna Kumar and M. M. Eshaghian. Parallel geometric algorithms for digitized pictures on mesh of trees. InProc. International Conference on Parallel Processing, pages 270–273, 1986.

  21. D. Nath, S. N. Maheshwari, and P. C. P. Bhat. Efficient VLSI networks for parallel processing based on orthogonal trees.IEEE Transactions on Computers,32:569–581, 1983.

    Article  MATH  Google Scholar 

  22. J. D. Ullman.Computational Aspects of VLSI. Computer Science Press, Rockville, Md., 1984.

    Google Scholar 

  23. M.-D. A. Huang. Solving some graph problems with optimal or near-optimal speedup on mesh-of-trees network. InProc. 26th Symposium on Foundations of Computer Science, pages 232–240, 1985.

  24. O. Schwarzkopf. Parallel computation of discrete Voronoi diagrams. In B. Monien and R. Cori, editors,Proc. Sixth Annual Symposium on Theoretical Aspects of Computer Science, pages 193–204, Springer-Verlag, Berlin, February 1989.

    Google Scholar 

  25. G. Voronoi. Nouvelles applications des parametres continues á la théorie des formes quadratiques.Journal für die Reine und Angewandte Mathematik,134:198–287, 1908.

    Article  MATH  Google Scholar 

  26. F. P. Preparata and M. I. Shamos.Computational Geometry. Springer-Verlag, New York, 1985.

    Google Scholar 

  27. D. T. Lee. Two-dimensional Voronoi diagrams in theL p -metric.Journal of the ACM,27:604–618, October 1980.

    Article  MATH  Google Scholar 

  28. H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  29. A. Aggarwal, B. Chazelle, L. Guibas, C. Ó'Dúnlaing, and C. K. Yap. Parallel computational geometry.Algorithmica,3:293–327, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  30. N. Dadoun and D. G. Kirkpatrick. Parallel processing for efficient subdivision search. InProc. Third Symposium on Computational Geometry, pages 205–214, 1987.

  31. C. F. Gauss.Disquisitiones arithmeticae. Leipzig, 1801 (English edition: Springer-Verlag, New York, 1986).

    Google Scholar 

  32. F. Fricker.Einführung in die Gitterpunktlehre. Birkhäuser, Basel, 1982.

    MATH  Google Scholar 

  33. E. Hlawka.Theorie der Gleichverteilung. Bibliographisches Institut, Mannheim, 1979.

    MATH  Google Scholar 

  34. P. D. T. A. Elliot.Probabilistic Number Theory I, Mean Value Theorems. Springer-Verlag, New York, 1979.

    Google Scholar 

  35. Hua Loo Keng and Wang Yuan.Applications of Number Theory to Numerical Analysis. Springer-Verlag, Berlin, 1981.

    MATH  Google Scholar 

  36. F. Dehne and J.-R. Sack. A survey of parallel computational geometry algorithms. InProc. Fourth International Workshop on Parallel Processing by Cellular Automata and Arrays, pages 73–88, Akademie-Verlag, Berlin, 1988.

    Google Scholar 

  37. Chang-Sung Jeong and D. T. Lee. Parallel geometric algorithms on mesh-connected computers. InProc. 1987 Fall Joint Computer Conference, pages 311–318, 1987.

  38. Mi Lu. Constructing the Voronoi diagram on a mesh-connected computer. InInternational Conference on Parallel Processing, pages 806–811, 1986.

  39. A. Rosenfeld. Parallel image processing using cellular arrays.IEEE Computer,16(1): 14–20, 1983.

    Google Scholar 

  40. S. H. Unger. A computer oriented toward spatial problems.Proc. IRE,46:1744–1750, 1958.

    Article  Google Scholar 

  41. S. H. Unger. Pattern detection and recognition.Proc. IRE,47:1737–1752, 1959.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Frank Dehne.

This research was supported by the Deutsche Forschungsgemeinschaft under Grant Al 253/1-1, Schwerpunktprogramm “Datenstrukturen und effiziente Algorithmen.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarzkopf, O. Parallel computation of disease transforms. Algorithmica 6, 685–697 (1991). https://doi.org/10.1007/BF01759067

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01759067

Key words

Navigation