Skip to main content
Log in

Heuristics for rapidly four-coloring large planar graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present several algorithms for rapidly four-coloring large planar graphs and discuss the results of extensive experimentation with over 140 graphs from two distinct classes of randomly generated instances having up to 128,000 vertices. Although the algorithms can potentially require exponential time, the observed running times of our more sophisticated algorithms are linear in the number of vertices over the range of sizes tested. The use of Kempe chaining and backtracking together with a fast heuristic which usually, but not always, resolves impasses gives us hybrid algorithms that: (1) successfully four-color all our test graphs, and (2) in practice run, on average, only twice as slow as the well-known, nonexact, simple to code, Θ(n) saturation algorithm of Brélaz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. I. Appel, W. Haken, and J. Koch. 1977. Every Planar Map is Four Colorable. Part I: Discharging.Illinois J. Math.,21, 429–490.

    MATH  MathSciNet  Google Scholar 

  2. K. I. Appel, W. Haken, and J. Koch. 1977. Every Planar Map is Four Colorable. Part II: Reducibility.Illinois J. Math.,21, 491–567.

    MATH  MathSciNet  Google Scholar 

  3. R. Archuleta and H. Shapiro. 1986. A Fast Probabilistic Algorithm for Four-Coloring Large Planar Graphs.Proc. Fall 1986 Joint Computer Conference, pp. 595–600.

  4. F. R. Bernhart. 1977. A Digest of the Four Color Theorem.J. Graph Theory,1, 207–225.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Brélaz. 1979. New Methods to Color Vertices of a Graph.Comm. ACM.,22, 251–256.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Chiba, T. Nishizeki, and N. Saito. 1981. A Linear 5-Coloring Algorithm of Planar Graphs.J. Algorithms,2, 317–327.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. D. J. Dunstan. 1976. Sequential Colourings of Graphs.Congr. Numer.,15, 151–158.

    MathSciNet  Google Scholar 

  8. G. N. Frederickson. 1984. On Linear Time Algorithms for Five-Coloring Planar Graphs.Inform. Process. Lett.,19, 219–224.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Haken. 1977. An Attempt to Understand the Four Color Problem.J. Graph Theory,1, 193–206.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. J. Heawood. 1890. Map-Colour Theorems.Quart. J. Math.,24, 332–338.

    Google Scholar 

  11. A. B. Kempe, 1879. On the Geographical Problem of the Four-Colors.Amer. J. Math. 2, 193–200.

    Article  MathSciNet  Google Scholar 

  12. I. Kittell. 1935. A Group of Operations on a Partially Colored Map.Bull. Amer. Math. Soc.,41, 407–413.

    Article  MathSciNet  Google Scholar 

  13. M. Kubale and B. Jackowski. 1985. A Generalized Implicit Enumeration for Graph-Coloring.Comm. ACM.,28, 412–418.

    Article  Google Scholar 

  14. F. T. Leighton. 1979. A Graph Coloring Algorithm for Large Scheduling Problems.J. Res. Nat. Bur. Standards,84, 489–506.

    MATH  MathSciNet  Google Scholar 

  15. G. Marble and D. W. Matula. 1972. Computational Aspects of 4-Coloring Planar Graphs. Technical Report, University of Wisconsin.

  16. D. W. Matula, G. Marble, and J. D. Isaacson. 1972. Graph Coloring Algorithms. InGraph Theory and Computing (R. C. Read, ed.), Academic Press, New York, pp. 109–122.

    Google Scholar 

  17. D. W. Matula, Y. Shiloach, and R. E. Tarjan. 1981. Analysis of Two Linear-Time Algorithms for Five-Coloring a Planar Graph.Congr. Numer.,33, 401.

    Google Scholar 

  18. C. Morgenstern. 1988. Saturation Based Graph Coloring Algorithms. Technical Report CS88-1, University of New Mexico, Albuquerque, New Mexico.

    Google Scholar 

  19. C. Morgenstern. 1990. Algorithms for General Graph Coloring. Doctoral Dissertation, Department of Computer Science, University of New Mexico, Albuquerque, New Mexico.

    Google Scholar 

  20. C. Morgenstern and H. D. Shapiro. 1984. Performance of Approximation Coloring Algorithms on Maximally Planar Graphs. Technical Report CS84-7, University of New Mexico, Albuquerque, New Mexico.

    Google Scholar 

  21. T. Nishizeki and N. Chiba. 1988. Planar Graphs: Theory and Algorithms.Ann. Discrete Math.,32.

  22. J. Peemoller. 1983. A Correction to Brelaz's Modification of Brown's Coloring Algorithm.Comm. ACM,26, 595–597.

    Article  Google Scholar 

  23. T. L. Saaty and P. C. Kainen. 1986.The Four-Color Problem. Dover, New York.

    Google Scholar 

  24. M. H. Williams and K. T. Milne. 1984. The Performance of Algorithms for Colouring Planar Graphs.Comput. J.,27, 165–170.

    Article  Google Scholar 

  25. M. R. Williams. 1974. Heuristic Procedures.Software-Practice and Experience,4, 237–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by David S. Johnson

The work of H. D. Shapiro was performed in part while he was on sabbatical at the Graz University of Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgenstern, C.A., Shapiro, H.D. Heuristics for rapidly four-coloring large planar graphs. Algorithmica 6, 869–891 (1991). https://doi.org/10.1007/BF01759077

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01759077

Key words

Navigation