Abstract
The convex hulls of more-part Sperner families is defined and studied. Corollaries of the results are some well-known theorems on 2 or 3-part Sperner families. Some methods are presented giving new theorems.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Erdös, P.: On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc.51, 898–902 (1945)
Erdös, P.L., Frankl, P., Katona, G.O.H.: Intersecting Sperner families and their convex hulls. Combinatorica4, 21–34 (1984)
Erdös, P.L., Frankl, P., Katona, G.O.H.: Extremal hypergraph problems and convex hulls. Combinatorica5, 11–26 (1985)
Erdös, P.L., Katona, G.O.H.: A three-part Sperner theorem. Studia Sci. Math. Hung. (submitted)
Erdös, P.L., Katona, G.O.H.: All maximum 2-part Sperner families. J. Comb. Theory (A) (submitted)
Frankl, P.: Personal communication
Frankl, P., Katona, G.O.H.: Polytopes determined by hypergraph classes. Europ. J. Comb. (to appear)
Füredi, Z.: A Ramsey-Sperner theorem. Graphs and Combinatorics1, 51–56 (1985)
Füredi, Z., Griggs, J.R., Odlyzko, A.M., Shearer, J.B.: Ramsey-Sperner theory. Discrete Math. (to appear)
Griggs, J.R.: Collection of subsets with Sperner property. Trans. Amer. Math. Soc.269, 575–591 (1982)
Griggs, J.R., Kleitman, D.J.: A three part Sperner theorem. Discrete Math.17, 281–289 (1977)
Griggs, J.R., Odlyzko, A.M., Shearer, J.B.:k-color Sperner theorems. J. Comb. Theory (A) (to appear)
Katona, G.O.H.: On a conjecture of Erdös and a stronger form of Sperner's theorem. Studia Sci. Math. Hung.1, 59–63 (1966)
Katona, G.O.H.: A generalization of some generalizations of Sperner's theorem. J. Comb. Theory (B)12, 72–81 (1972)
Katona, G.O.H.: Families of subsets having no subset containing another with small difference. Nieuw Arch. Wiskd.20(3), 54–67 (1972)
Katona, G.O.H.: A simple proof of the Erdös-Ko-Rado theorem. J. Comb. Theory (B)13, 183–184 (1972)
Katona G.O.H.: A three-part Sperner theorem. Studia Sci. Math. Hung.8, 379–390 (1973)
Kleitman, D.J.: On a lemma of Littlewood and Offord on the distribution of certain sums. Math. Z.90, 251–259 (1965)
Kleitman, D.J.: On an extremal property of antichains in partial orders. The LYM property and some of its implications and applications. In: Combinatorics, Mathematical Centre Tracts 56, edited by M. Hall Jr., H. van Lint, vol. 2, pp 77–96. Amsterdam: Mathematisch Centrum 1974
Lih, K.-W.: Sperner families over a subset. J. Comb. Theory (A)29, 182–185 (1980)
Sali, A.: Stronger form anM-part Sperner theorem. Europ. J. Comb.4, 179–183 (1983)
Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z.27, 544–548 (1928)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Erdös, P.L., Katona, G.O.H. Convex hulls of more-part Sperner families. Graphs and Combinatorics 2, 123–134 (1986). https://doi.org/10.1007/BF01788086
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01788086