Abstract
The Kirchhoff Matrix Tree Theorem provides an efficient algorithm for determiningt(G), the number of spanning trees of any graphG, in terms of a determinant. However for many special classes of graphs, one can avoid the evaluation of a determinant, as there are simple, explicit formulas that give the value oft(G). In this work we show that many of these formulas can be simply derived from known properties of Chebyshev polynomials. This is demonstrated for wheels, fans, ladders, Moebius ladders, and squares of cycles. The method is then used to derive a new spanning tree formula for the complete prismR n (m) =K m ×C n . It is shown that
whereT n (x) is then th order Chebyshev polynomial of the first kind.
Similar content being viewed by others
References
Baron, G., Boesch, F., Prodinger, H., Tichy, R., Wang, J.: The number of spanning trees in the square of a cycle. Fibonacci Q. (to appear)
Bellman, R.: Introduction to Matrix Analysis. New York: McGraw Hill 1970
Biggs, N.: Algebraic Graph Theory. London: Cambridge University Press 1974
Boesch, F., Bogdanowicz, Z.: The number of spanning trees in a prism. Stevens Institute Computer Science Report 8405 (1984)
Boesch, F.T., Wang, J.F.: A conjecture on the number of spanning trees in the square of a cycle. In: Notes from New York Graph Theory Day V, p. 16. New York: New York Academy Sciences 1982
Feussner, W.: Zur Berechnung der Stromsträrke in netzförmigen Leitern. Ann. Phys.15, 385–394 (1904)
Harry, F.: Graph Theory. Reading: Addison-Wesley 1969
Hilton, A.J.W.: Spanning trees and Fibonacci and Lucas numbers. Fibonacci Q.12, 259–262 (1974)
Kel'mans, A.K., Chelnokov, V.M.: A certain polynomial of a graph and graphs with an extremal number of trees. J. Comb. Theory (B)16, 197–214 (1974)
Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem.72, 497–508 (1847)
Kleitman, D.J., Golden, B.: Counting trees in a certain class of graphs. Amer. Math. Mon.82, 40–44 (1975)
Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Boston: Allyn and Bacon 1964
Moon, J.W. Counting Labelled Trees. Canadian Mathematical Congress Monograph 1. London: William Clowes & Sons 1970
Sachs, H.: Über selbstkomplementäre Graphen. Publ. Math. Debrecen9, 270–288 (1962)
Schwenk, A., Wilson, R.: On the eigenvalues of a graph. In: Selected Topics in Graph Theory, edided by Beineke, Wilson, pp. 307–336. New York: Academic Press 1978
Schwenk, A.: Computing the characteristic polynomial of a graph. In: Graphs and Combinatorics, Lecture Notes in Mathematics406, pp. 153–172. Berlin-Heidelberg-New York: Springer-Verlag 1974
Sedlácěk, J.: Lucas numbers in graph theory. In: Mathematics-Geometry and Graph Theory (in Czechoslovak), pp. 111–115. Prague: Univ. Karlova 1970. See also Sedlácěk, J.: Ungerichtete Graphen und ihre Gerüste. In: Beiträge zur Graphen Theorie, edited by (H. Sachs, H.-J. Vosz, H. Walther, pp. 143–146. Leipzig: Teubner 1968
Sedlácěk, J.: On the spanning trees of finite graphs. Cas. Pestovani Mat.94, 217–221 (1969)
Sedlácěk, J.: On the skeletons of a graph or digraph. In: Combinatorial Structures and their Applications, editded by R. Guy, M. Hanani, N. Saver, J. Schonheim, pp. 387–391. New York: Gordon and Breach 1970
Snyder, M.: Chebyshev Methods in Numerical Analysis. Englewood Cliffs: Prentice-Hall 1966
Temperley, H.: On the mutual cancellation of cluster integrals in Mayer's fugacity series. Proc. Phys. Soc. Lond. Ser. A83, 3–16 (1964)
Author information
Authors and Affiliations
Additional information
The work of this author was supported under NSF Grant ECS-8100652.
Rights and permissions
About this article
Cite this article
Boesch, F.T., Prodinger, H. Spanning tree formulas and chebyshev polynomials. Graphs and Combinatorics 2, 191–200 (1986). https://doi.org/10.1007/BF01788093
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01788093