Abstract
Necessary and sufficient conditions are given for an odd composite integern to be a Fibonacci pseudoprime of them th kind for allm∈ℤ. One consequence of this characterization is that any such pseudoprime has to be a Carmichael number.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Baillie, R., Wagstaff Jr., S. S.: Lucas pseudoprimes. Math. Comp.35, 1391–1417 (1980)
Dickson, L.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group I. Ann. Math.11, 65–120 (1896)
Di Porto, A., Filipponi, P.: A probabilistic primality test based on the properties of certain generalized Lucas numbers. In: Advances in Cryptology — Eucocrypt'88, Lecture Notes in Computer Science vol.330, pp. 211–223. Berlin, Heidelberg, New York: Springer 1988
Di Porto, A., Filipponi, P.: GeneratingM-strong Fibonacci pseudoprimes. Extended Abstract, Eurocrypt'89, Houthalen (Belgium), April 10–13, 1989
Filipponi, P.: Table of Fibonacci pseudoprimes to 108. Note Recensioni Notizie37, 33–38 (1988)
Koblitz, N.: A course in number theory and cryptography. Berlin, Heidelberg, New York: Springer 1987
Lausch, H., Nöbauer, W.: Algebra of polynomials. North Holland: Amsterdam 1973
Lidl, R., Müller, W. B.: Generalizations of the Fibonacci pseudoprimes test. Submitted
Lidl, R., Niederreiter, H.: Finite fields. Addison Wesley, Reading, 1983. (Now published by Cambridge University Press, Cambridge)
Müller, W. B.: Polynomial functions in modern cryptology. In: Contributions to General Algebra vol.3, pp. 7–32. Stuttgart: Teubner 1985
Müller, W. B.: Polynome und Einwegfunktionen. e&i (Elektrotechnik und Informationstechnik)105, 31–35 (1988)
Nöbauer, R.: Über die Fixpunkte einer Klasse von Dickson-Permutationen. Sb.d.Österr.Akad.d.Wiss., math.-nat.Kl., Abt.II,193, 521–547 (1984)
Nöbauer, W.: Über Permutationspolynome und Permutationsfunktionen für Primzahlpotenzen. Mh.Math.69, 230–238 (1965)
Rédei, L.: Algebra, Volume 1. Oxford, London, New York: Pergamon Press 1967
Ribenboim, P.: The book of prime number records. Berlin, Heidelberg, New York: Springer 1988
Author information
Authors and Affiliations
Additional information
This author expresses his special thanks to the School of Information Engineering at Teesside Polytechnic, Middlesbrough, England, for its support and hospitality during a visiting appoint of 3 months in 1989, when this paper was written
Rights and permissions
About this article
Cite this article
Lidl, R., Müller, W.B. & Oswald, A. Some remarks on strong fibonacci pseudoprimes. AAECC 1, 59–65 (1990). https://doi.org/10.1007/BF01810848
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01810848