Skip to main content
Log in

Effective Łojasiewicz inequalities in semialgebraic geometry

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

The main result of this paper can be stated as follows: letV ⊂ ℝn be a compact semialgebraic set given by a boolean combination of inequalities involving only polynomials whose number and degrees are bounded by someD > 1. LetF, G∈∝[X1,⋯, Xn] be polynomials with degF, degG ≦ D inducing onV continuous semialgebraic functionsf, g:V→R. Assume that the zeros off are contained in the zeros ofg. Then the following effective Łojasiewicz inequality is true: there exists an universal constantc 1∈ℕ and a positive constantc 2∈∝ (depending onV, f,g) such that\(|g(x)|^{D^{c_1 .n} } \leqq c_2 \cdot |f(x)|\) for allx∈V. This result is generalized to arbitrary given compact semialgebraic setsV and arbitrary continuous functionsf,g:V → ∝. An effective global Łojasiewicz inequality on the minimal distance of solutions of polynomial inequalities systems and an effective Finiteness Theorem (with admissible complexity bounds) for open and closed semialgebraic sets are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bochnak, J., Coste, M., Roy, M-F.: Géométrie algébrique réelle. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  2. Collins, G.: Quantifier elimination for real closed fields by cylindric algebraic decomposition. Second GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Sciences Vol. 33. pp. 134–183. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  3. Fitchas, N., Galligo, A.: Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen—Suslin) pour le Calcul Formel. Mathematische Nachrichten (to appear)

  4. Fitchas, N., Galligo, A., Morgenstern, J.: Algorithmes rapides en séquentiel et en parallèle pour l'élimination des quantificateurs en géométrie élémentaire. Publ. Math. Univ. Paris VII. Sém. Struct. Alg. Ord. '84–'87 Vol. I, 103–145 (1990)

    Google Scholar 

  5. von zur Gathen, J.: Parallel arithmetic computations: a survey. Proc. 13th. Conf. MFCS. Lecture Notes in Computer Sciences, Vol. 233 pp. 93–112. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  6. Grigor'ev, D.: Complexity of deciding Tarski algebra. J. Sumb. Comput.5, 65–108 (1988)

    Google Scholar 

  7. Heintz, J., Roy, M.-F., Solernó, P.: Complexité du principe de Tarski—Seidenberg. Comptes—Rendus de l'Académie des Sciences Paris309, 825–830 (1989)

    Google Scholar 

  8. Heintz, J., Roy, M-F., Solernó, P.: Sur la complexité du principe de Tarski—Seidenberg. Bull. Soc. Math. France118, 101–126 (1990)

    Google Scholar 

  9. Ji, S., Kollár, J., Shiffman, B.: A global Łojasiewicz inequality for algebraic varieties. Trans. A.M.S. (to appear)

  10. Möller, H., Mora, F.: Upper and lower bounds for the degree of Gröebner bases. Proc. EUROSAM 84., Cambridge, England. Lecture Notes in Comp. Sci. Vol. 174. pp. 172–183. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  11. Renegar, J.: On the computational complexity and geometry of the first order theory of the reals. Technical Report Vol. 856, Cornell University Ithaca (1989)

  12. Wüthrich, H.: Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper. Komplexität von Entscheidungsproblemen, Lecture Notes in Comp. Sci. Vol. 43. pp. 138–162. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solernó, P. Effective Łojasiewicz inequalities in semialgebraic geometry. AAECC 2, 1–14 (1991). https://doi.org/10.1007/BF01810850

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01810850

Keywords