Abstract
The main result of this paper can be stated as follows: letV ⊂ ℝn be a compact semialgebraic set given by a boolean combination of inequalities involving only polynomials whose number and degrees are bounded by someD > 1. LetF, G∈∝[X1,⋯, Xn] be polynomials with degF, degG ≦ D inducing onV continuous semialgebraic functionsf, g:V→R. Assume that the zeros off are contained in the zeros ofg. Then the following effective Łojasiewicz inequality is true: there exists an universal constantc 1∈ℕ and a positive constantc 2∈∝ (depending onV, f,g) such that\(|g(x)|^{D^{c_1 .n} } \leqq c_2 \cdot |f(x)|\) for allx∈V. This result is generalized to arbitrary given compact semialgebraic setsV and arbitrary continuous functionsf,g:V → ∝. An effective global Łojasiewicz inequality on the minimal distance of solutions of polynomial inequalities systems and an effective Finiteness Theorem (with admissible complexity bounds) for open and closed semialgebraic sets are derived.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bochnak, J., Coste, M., Roy, M-F.: Géométrie algébrique réelle. Berlin, Heidelberg, New York: Springer 1987
Collins, G.: Quantifier elimination for real closed fields by cylindric algebraic decomposition. Second GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer Sciences Vol. 33. pp. 134–183. Berlin, Heidelberg, New York: Springer 1975
Fitchas, N., Galligo, A.: Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen—Suslin) pour le Calcul Formel. Mathematische Nachrichten (to appear)
Fitchas, N., Galligo, A., Morgenstern, J.: Algorithmes rapides en séquentiel et en parallèle pour l'élimination des quantificateurs en géométrie élémentaire. Publ. Math. Univ. Paris VII. Sém. Struct. Alg. Ord. '84–'87 Vol. I, 103–145 (1990)
von zur Gathen, J.: Parallel arithmetic computations: a survey. Proc. 13th. Conf. MFCS. Lecture Notes in Computer Sciences, Vol. 233 pp. 93–112. Berlin, Heidelberg, New York: Springer 1986
Grigor'ev, D.: Complexity of deciding Tarski algebra. J. Sumb. Comput.5, 65–108 (1988)
Heintz, J., Roy, M.-F., Solernó, P.: Complexité du principe de Tarski—Seidenberg. Comptes—Rendus de l'Académie des Sciences Paris309, 825–830 (1989)
Heintz, J., Roy, M-F., Solernó, P.: Sur la complexité du principe de Tarski—Seidenberg. Bull. Soc. Math. France118, 101–126 (1990)
Ji, S., Kollár, J., Shiffman, B.: A global Łojasiewicz inequality for algebraic varieties. Trans. A.M.S. (to appear)
Möller, H., Mora, F.: Upper and lower bounds for the degree of Gröebner bases. Proc. EUROSAM 84., Cambridge, England. Lecture Notes in Comp. Sci. Vol. 174. pp. 172–183. Berlin, Heidelberg, New York: Springer 1984
Renegar, J.: On the computational complexity and geometry of the first order theory of the reals. Technical Report Vol. 856, Cornell University Ithaca (1989)
Wüthrich, H.: Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper. Komplexität von Entscheidungsproblemen, Lecture Notes in Comp. Sci. Vol. 43. pp. 138–162. Berlin, Heidelberg, New York: Springer 1976
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Solernó, P. Effective Łojasiewicz inequalities in semialgebraic geometry. AAECC 2, 1–14 (1991). https://doi.org/10.1007/BF01810850
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01810850