Skip to main content

On the existence and synthesis of multifinger positive grips

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the criteria under which an object can be gripped by a multifingered dexterous hand, assuming no static friction between the object and the fingers; such grips are calledpositive grips. We study three cases in detail: (i) the body is at equilibrium, (ii) the body is under some constant external force/torque, and (iii) the body is under a varying external force/torque. In each case we obtain tight bounds on the number of fingers needed to obtain grip.

We also present efficient algorithms to synthesize such positive grips for bounded polyhedral/polygonal objects; the number of fingers employed in the grips synthesized by our algorithms match the above bounds. The algorithms run in time linear in the number of faces/sides.

The paper may be of independent interest for its presentation of algorithms arising in the study of positive linear spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Asada, Studies on prehension and handling by robot hands with elastic fingers, Ph.D. Thesis, Kyoto University, 1979.

  2. B. S. Baker, S. Fortune, and E. Grosse, Stable prehension with three fingers,Proceedings of the 17th Annual Symposium on Theory of Computing, Providence, RI, 1985, pp. 114–120.

  3. R. V. Benson,Euclidean Geometry and Convexity, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  4. W. Bonnice and V. L. Klee, The generation of convex hulls,Math. Ann.,152 (1963), 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen,Math. Ann.,64 (1907), 95–115.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Danzer, B. Grünbaum, and V. Klee, Helly's theorem and its relatives, inConvexity, Proceedings of Symposia in Pure Mathematics, Vol. 7, American Mathematical Society, Providence, RI, 1962, pp. 101–180.

    Google Scholar 

  7. C. Davis, Theory of positive linear dependence,Amer. J. Math.,76 (1954), 733–746.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Gale, Linear combinations of vectors with non-negative coefficients,Amer. Math. Monthly,59 (1952), 46–47.

    Article  MathSciNet  Google Scholar 

  9. H. Hanafusa and H. Asada, Stable prehension by a robot hand with elastic fingers,Proceedings of the Seventh International Symposium on Industrial Robots,Tokyo, 1977, pp. 361–368. Also appears inRobot Motion (M. Bradyet al. ed.), MIT Press, Cambridge, MA, 1983, pp. 323–336.

  10. S. C. Jacobsen, J. E. Wood, D. F. Knutti, and K. B. Biggers, The UTAH/M.I.T. dexterous hand: work in progress,Internat. J. Robotics Res.,3 (4) (1984), 21–50.

    Article  Google Scholar 

  11. J. Kerr and B. Roth, Analysis of multifingered hands,Internat. J. Robotics Res. 4 (4) (1986), 3–17.

    Article  Google Scholar 

  12. L. Liyangi and D. Kohli, Analysis of conditions of stable prehension of a robot hand with elastic fingers,Proceedings of the Intelligence and Productivity Conference, Detroit, MI, 1983, pp. 99–104.

  13. R. L. McKinney, Positive bases for linear spaces,Trans. Amer. Math. Soc.,103 (1962), 131–148.

    Article  MATH  MathSciNet  Google Scholar 

  14. V. Nguyen, The synthesis of force-closure grasps in the plane, A.I. Memo. 861, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1985.

    Google Scholar 

  15. V. Nguyen, The synthesis of stable grasps in the plane, A.I. Memo. 862, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 1985.

    Google Scholar 

  16. T. Okada, Computer control of multi-jointed finger system for precise object handling,IEEE Trans. Systems Man Cybernet., (1982).

  17. J. K. Salisbury, Jr., Kinematics and force analysis of articulated hands, inRobot Hands and the Mechanics of Manipulation M. T. Mason and J. K. Salisbury, Jr., eds.), MIT Press, Cambridge, MA, 1985, pp. 2–167.

    Google Scholar 

  18. J. K. Salisbury and J. J. Craig, Articulated hands: force control and kinematic issues,Internat. J. Robotics Res.,1 (1) (1982), 4–17.

    Article  Google Scholar 

  19. K. Salisbury and C. Ruoff, The design and control of a dexterous mechanical hand,Proceedings of the 1981 ASME Computer Conference, Minneapolis, MN, 1981.

  20. J. T. Schwartz, Comments on control problems for manipulation, Technical Report, Robotics and Computer Vision Laboratory, Courant Institute of Mathematical Sciences, New York, 1986.

    Google Scholar 

  21. J. T. Schwartz and M. Sharir, Finding effective “force targets” for two-dimensional multifinger frictional grips, Technical Report, Robotics and Computer Vision Laboratory, Courant Institute of Mathematical Science, New York, 1986.

    Google Scholar 

  22. E. Steinitz, Bedingt Konvergente Reihen und Konvexe Systeme I,J Reine Angew. Math.,143 (1913), 128–175.

    Google Scholar 

  23. E. Steinitz, Bedingt Konvergente Reihen und Konvexe Systeme II,J. Reine Angew. Math.,144 (1914), 1–40.

    Google Scholar 

  24. E. Steinitz, Bedingt Konvergente Reihen und Konvexe Systeme III,J. Reine Angew. Math.,146 (1916), 1–52.

    Google Scholar 

  25. G. Strang,Linear Algebra and Its Applications, 2nd ed., Academic Press, New York, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Chee-Keng Yap.

Work on this paper has been supported by Office of Naval Research Grant N00014-82-K.-0381, National Science Foundation Grant No. NSF-DCR-83-20085, and by grants from the Digital Equipment Corporation, and the IBM Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, B., Schwartz, J.T. & Sharir, M. On the existence and synthesis of multifinger positive grips. Algorithmica 2, 541–558 (1987). https://doi.org/10.1007/BF01840373

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01840373

Key words