Abstract
We discuss some results concerned with the behaviour of colouring algorithms on large random graphs.
Similar content being viewed by others
References
E.A. Bender and H.S. Wilf, A theoretical analysis of backtracking in the graph coloring problem (1983) preprint.
B. Bollobás, Graph Theory, Graduate Texts in Mathematics 63 (Springer Verlag, Berlin, 1979).
B. Bollobás and P. Erdős, Cliques in random graphs, Math. Proc. Camb. Phil. Soc. 80 (1976) 419.
D. Brélaz, New methods to color the vertices of a graph, Comm. A.C.M. 22 (1979) 251.
J.R. Brown, Chromatic scheduling and the chromatic number problem, Man. Sci. 19 (1972) 456.
Y.D. Burtin, Aymptotic estimates of the diameter, independence and dominance numbers of a random graph, Sov. Math. Dokl. 14 (1973) 497.
N. Christofides, An algorithm for the chromatic number of a graph, Comput. J. 14 (1971) 38.
N. Christofides, Graph Theory — an Algorithmic Approach (Academic Press, 1975).
V. Chvátal, Determining the stability number of a graph, SIAM J. Comput. 6 (1977) 643.
V. Chvátal, Hard knapsack problems, Oper. Res. 28 (1980) 1402.
D.G. Corneil and B. Graham, An algorithm for determining the chromatic number of a graph, SIAM J. Comput. 2 (1973) 311.
F.D.J. Dunstan, Sequential colourings of graphs, Proc. 5th British Comb. Conf., ed. C. St. J.A. Nash-Williams and J. Sheehan (Utilitas Mathematica, Winnipeg, 1976) p. 151.
K. Dürre, Approximate algorithms for coloring large graphs, Datenstrukt, Graphen, Algorithm 3 Fachtag Graphentheor. Konz. Inf., Linz 1977, (1978) p. 191.
P. Erdős, Graph theory and probability, Can. J. Math. 11 (1959) 34.
P. Erdős, On circuits and subgraphs of random graphs, Mathematika 9 (1962) 170.
P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960) 17.
P. Erdős and J. Spencer, Probabilistic Methods in Combinatorics (Academic Press, New York and London, 1974).
M.R. Garey and D.S. Johnson, The complexity of near optimal graph coloring, J.A.C.M. 23 (1976) 43.
M.R. Garey and D.S. Johnson, Computers and Intractability (Freeman, San Francisco, 1979).
G.R. Grimmett, Random graph theorems, Trans. 7th Prague Conf. on Information Th. and related topics A (1977) p. 203.
G.R. Grimmett, Random graphs, in: Selected Topics in Graph Theory 2, ed. L. Beineke and R. Wilson (Academic Press, London, 1983) p. 201.
G.R. Grimmett and C.J.H. McDiarmid, On colouring random graphs, Math. Proc. Camb. Phil. Soc. 77 (1975) 313.
D. Hochbaum, Easy solutions for theK-center problem or the dominating set problem on random graphs (1982) preprint.
D.S. Johnson, Worst case behaviour of graph colouring algorithms, Proc. 5th S.E. Conf. on Combinatorics, Graph Theory and Computing (Utilitas Mathematica, Winnipeg, 1974) p. 513.
A. Johri and D.W. Matula, Probabilistic bounds and heuristic algorithms for coloring large random graphs, Technical Report 82-CSE-6 (Southern Methodist University, Dallas, Texas, 1982).
M. Karonski, A review of random graphs, J. Graph. Th. 6 (1982) 349.
R.M. Karp, The probabilistic analysis of some combinatorial search algorithms, in: Algorithms and Complexity, ed. J.F. Traub (Academic Press, New York, 1976) p. 1.
T. Kawaguchi, H. Nakano and Y. Nakanishi, Probabilistic analysis of a heuristic graph coloring algorithm (1982) preprint.
D.G. Kelly and J.G. Oxley, Asymptotic properties of random subsets of projective spaces, Math. Proc. Camb. Phil. Soc. 91 (1982) 119.
A.D. Korsunov, The chromatic number ofn-vertex graphs, Metody Diskret. Analiz. No. 35 (1980) 14–44, 104 (in Russian).
L. Kućera, Expected behaviour of graph coloring algorithms, Lecture Notes in Computer Science 56 (1977) p. 447.
E.L. Lawler, A note on the complexity of the chromatic number problem, Inf. Proc. Lett. 5 (1976) 66.
F.T. Leighton, A graph coloring algorithm for large scheduling problems, J. Res. Nat. Bur. Stand. 84 (1979) 489.
D.W. Matula, On the complete subgraphs of a random graph, Comb. Math. and its Appls. (Chapel Hill, N.C., 1970) p. 356.
D.W. Matula, The employee party problem, Not. A.M.S. 19 (1972) A-382.
D.W. Matula, private communication (1982).
D.W. Matula, G. Marble and J.D. Isaacson, Graph colouring algorithms, in: Graph Theory and Computing, ed. R.C. Read (Academic Press, New York, 1972) p. 109.
C.J.H. McDiarmid, Determining the chromatic number of a graph, Technical Report STAN-CS-76-576 (Stanford University, 1976).
C.J.H. McDiarmid, Determining the chromatic number of a graph, SIAM J. Comput. 8 (1979) 1.
C.J.H. McDiarmid, Colouring random graphs badly, in: Graph Theory and Combinatorics, ed. R.J. Wilson (Pitman Research Notes in Mathematics 34, Pitman, London, 1979) p. 76.
C.J.H. McDiarmid, Achromatic numbers of random graphs, Math. Proc. Camb. Phil. Soc. 92 (1982) 21.
C.J.H. McDiarmid, On the chromatic forcing number of a random graph, Discr. Appl. Math. 5 (1983) 123.
D.M. Miller, An algorithm for determining the chromatic number of a graph, Proc. 5th Manitoba Conf. on Numerical Math., ed. Hartnell and Williams (1975) p. 533.
J. Mitchem, On various algorithms for estimating the chromatic number of a graph, Comput. J. 19 (1976) 182.
A. Punter, private communications.
G. Schmidt and T. Ströhleim, Timertable construction — an annotated bibliography, Comput. J. 23 (1980) 307.
J. Schmidt-Pruzan, Probabilistic analysis of strong hypergraph coloring algorithms and the strong chromatic number (1983) preprint.
J. Schmidt-Pruzan, E. Shamir and E. Upfal, Random hypergraph coloring algorithms and the weak chromatic number (1983) preprint.
E. Shamir and E. Upfal, Sequential and distributed graph coloring algorithms with performance analysis in random graph spaces (1982) preprint.
G. Tinhofer, Zufallsgraphen (Applied Computer Science 17, Hanser, Munich and Vienna, 1980).
I. Tomescu, On the chromatic number of almost all graphs, Bull. Math. de la Soc. Sci. Math. de la R.S. de Roumanie Tome 25(73), nr. 3 (1981) 321.
W.F. de la Vega, On the chromatic number of sparse random graphs (1983) preprint.
W.F. de la Vega, Crowded graphs can be colored within 1+ε in polynomial time (1983) preprint.
C.C. Wang, An algorithm for the chromatic number of a graph, J.A.C.M. 21 (1974) 385.
A. Wigderson, A new approximate graph coloring algorithm (1983) preprint.
H.S. Wilf, Backtrack: an O(1) expected time algorithm for the graph coloring problem (1983) preprint.
B. Pittel, On the probable behaviour of some algorithms for finding the stability number of a graph, Math. Proc. Camb. Phil. Soc. 92 (1982) 511.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
McDiarmid, C. Colouring random graphs. Ann Oper Res 1, 183–200 (1984). https://doi.org/10.1007/BF01874388
Issue Date:
DOI: https://doi.org/10.1007/BF01874388