Skip to main content
Log in

Shortest paths for line segments

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the problem of shortest paths for a line segment in the plane. As a measure of the distance traversed by a path, we take the average curve length of the orbits of prescribed points on the line segment. This problem is nontrivial even in free space (i.e., in the absence of obstacles). We characterize all shortest paths of the line segment moving in free space under the measured 2, the average orbit length of the two endpoints.

The problem ofd 2 optimal motion has been solved by Gurevich and also by Dubovitskij, who calls it Ulam's problem. Unlike previous solutions, our basic tool is Cauchy's surface-area formula. This new approach is relatively elementary, and yields new insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility-polygon search and Euclidean shortest paths.Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, 1985, pp. 155–164.

  2. A. S. Besicovitch. On Kakeya's problem and a similar one.Mathematische Zeitschrift 27 (1928), 312–320.

    Article  MathSciNet  Google Scholar 

  3. C. Blatter, Über Kurven konstanter Breite.Elemente der Mathematik 36 (1981), 105–115.

    MATH  MathSciNet  Google Scholar 

  4. V. A. Dubovitskij,Zadacha Ulama ob optimal 'nom sovmeshchenii otrezkov. USSR Academy of Sciences, Chernogolovka, Moscow, 1981 (in Russian). English translation:The Ulam Problem of Optimal Motion of Line Segments. Optimization Software, New York, 1985.

    Google Scholar 

  5. H. G. Eggleston.Convexity. Cambridge University Press, Cambridge, 1958.

    MATH  Google Scholar 

  6. M. Goldberg. The minimum path and the minimum motion of a moved line segment.Mathematics Magazine 46 (1973), 31–34.

    Article  MATH  Google Scholar 

  7. A. B. Gurevich. The “most economical” displacement of a segment.Differentsial'nye Uravneniya 11 (12) (1975), 2134–2143 (in Russian). English translation:Differential Equations 11 (1976), 1583–1589.

    MATH  Google Scholar 

  8. D. Hilbert. Über das Dirichlet'sche Princip.Jahresbericht der Deutschen Mathematiker-Vereinigung 8 (1900), 184–188.

    Google Scholar 

  9. J. O'Rourke. Finding a Shortest Ladder Path: A Special Case. IMA Preprint Series No. 353, Institute for Mathematics and Its Applications, University of Minnesota, 1987.

  10. C. H. Papadimitriou and E. B. Silverberg.Optimal piecewise linear motion of an object among obstacles. Algorithmica 2 (1987), 523–539.

    MATH  MathSciNet  Google Scholar 

  11. W. Rinow.Die innere Geometrie der metrischen Räume. Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 105. Springer-Verlag, Berlin, 1961.

    Google Scholar 

  12. J. T. Schwartz and M. Sharir. On the piano movers' problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers.Communications on Pure and Applied Mathematics 36 (1983), 345–398.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Sharir. A note on the Papadimitriou-Silverberg Algorithm for Planning Optimal Piecewise-Linear Motion of a Ladder. Robotics Report No. 188, New York University, 1989.

  14. S. M. Ulam.Problems of Modern Mathematics. Science Editions, New York, 1964. Originally published asA Collection of Mathematical Problems. Interscience, New York, 1960.

    Google Scholar 

  15. I. M. Yaglom and V. G. Boltyanskii.Convex Figures. Holt, Rinehart, and Winston, New York, 1961.

    MATH  Google Scholar 

  16. C. K. Yap. Algorithmic Motion Planning. In J. T. Schwartz and C. K. Yap, editors,Advances in Robotics, Vol. 1. Lawrence Erlbaum, Hillsdale, NJ, 1987, pp. 95–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Bruce Randall Donald.

This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under Contract No. 3075 (project ALCOM) and by the Deutsche Forschungsgemeinschaft Grant Ot 64/5-3. Chee Yap acknowledges support from the Deutsche Forschungsgemeinschaft, and partial support from NSF Grants DCR-8401898 and DCR-8401633.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Icking, C., Rote, G., Welzl, E. et al. Shortest paths for line segments. Algorithmica 10, 182–200 (1993). https://doi.org/10.1007/BF01891839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01891839

Key words