Abstract
Efficient solutions to physical equilibrium and interpolation problems can be obtained by using wavelet basis vectors for problem discretization or for use as a preconditioning transform. Good approximations to these solutions can be obtained in onlyO(n) operations andO(n) storage locations, a property that can be extremely useful in visualization applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adelson EH, Simoncelli E, Hingorani R (1987) Orthogonal pyramid transforms for image coding. Proc SPIE 845:50–58
Albert B (1992) Construction of simple multiscale bases for fast matrix operations. In: Ruskai et al. (ed), Wavelets and their applications, Jones and Bartlett, Boston, pp 211–226
Bathe K-J (1982) Finite element procedures in engineering analysis. Prentice-Hall, New York
Beylkin G, Coifman R, Rokhlin V (1992) Wavelets in numerical analysis. In: Ruskai et al. (ed), Wavelets and their applications, Jones and Bartlett, Boston, pp 181–210
Bould T, Kender J (1986) Visual surface reconstruction using sparse depth data. IEEE Conf Comput Vision and Pattern Recognition 1986:68–76
Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math XLI:909–996
Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math 15:723–736
Mallat SG (1987) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans PAMI 11(7):674–693
Meyer Y (1986) Principe d'incertitude, bases hilbertiennes et algebres d'operateurs. Bourbaki Seminar, No. 662
Pentland A (1990) Physically-based dynamical models for image processing and recognition. In: Grosskopf RE (ed), Mustererkennung 1990, Informatik-Fachberichte 254. Springer, Berlin Heidelberg New York, pp 171–193
Poggio T, Torre V, Koch C (1985) Computational vision and regularization theory. Nature 317:314–319
Segerlind LJ (1984) Applied finite element analysis. John Wiley, New York
Simoncelli E, Adelson E (1990) Non-separable extensions of quadrature mirror filters to multiple dimensions. Proc IEEE 78(4):652–664
Szeliski R (1990) Fast surface interpolation using hierarchical basis functions. IEEE Trans PAMI 12(6):513–528
Terzopoulos D (1988) The computation of visible surface representations. IEEE Trans PAMI 10(4):417–439
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pentland, A.P. Fast solutions to physical equilibrium and interpolation problems. The Visual Computer 8, 303–314 (1992). https://doi.org/10.1007/BF01897117
Issue Date:
DOI: https://doi.org/10.1007/BF01897117