Skip to main content

Advertisement

Log in

k-convexn-person games and their cores

  • Published:
Zeitschrift für Operations Research Aims and scope Submit manuscript

Abstract

For any natural numbersk andn, the subclass ofk-convexn-person games is introduced. In casek=n, the subclass consists of the convexn-person games. Ak-convexn-person game is characterized in several ways in terms of the core and certain marginal worth vectors. The marginal worth vectors of a game are described in terms of an upper bound for the core and the corresponding gap function.

It is shown that thek-convexity of ann-person gamev is equivalent to

  1. (i)

    all marginal worth vectors ofv belong to the core ofv; or

  2. (ii)

    the core ofv is the convex hull of the set consisting of all marginal worth vectors ofv; or

  3. (iii)

    the extreme points of the core ofv are exactly the marginal worth vectors ofv.

Examples ofk-convexn-person games are also treated.

Zusammenfassung

Für natürliche Zahlenk undn wird die Unterklasse derk-konvexenn-Personen Spiele eingeführt. Im Fallek=n besteht die Unterklasse aus den konvexenn-Personen Spielen. Eink-konvexesn-Personen Spiel wird auf verschiedene Weise durch den Kern und gewisse Vektoren der Marginalwerte charakterisiert. Die Vektoren der Marginalwerte des Spieles werden durch eine obere Schranke für den Kern und die zugehörige GAP-Funktion beschrieben. Es wird gezeigt, daß diek-Konvexität einesn-Personen Spielesv äquivalent ist mit den Aussagen:

  1. (i)

    Alle Vektoren von Marginalwerten vonv gehören zum Kern vonv; oder:

  2. (ii)

    Der Kern vonv ist die konvexe Hülle der Menge aller Vektoren von Marginalwerten vonv; oder

  3. (iii)

    Die Eckpunkte des Kerns vonv entsprechen genau den Vektoren der Marginalwerte vonv.

Ferner werden Beispiele fürk-konvexen-Personen Spiele behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Driessen TSH (1984) Cores ofk-convexn-person games. Report 8433. Department of Mathematics, Catholic University, Nijmegen, The Netherlands

    Google Scholar 

  • Driessen TSH (1985) Properties of 1-convexn-person games. Operations Research Spektrum 7:19–26

    Google Scholar 

  • Driessen TSH, Tijs SH (1982) Semiconvex games and theτ-value. Report 8228. Department of Mathematics, Catholic University, Nijmegen, The Netherlands (To appear in International Journal of Game Theory)

    Google Scholar 

  • Driessen TSH, Tijs SH (1983) Theτ-value, the nucleolus and the core for a subclass of games. Methods of Operations Research 46:395–406

    Google Scholar 

  • Driessen, TSH, Tijs SH (1984) Extensions and modifications of theτ-value for cooperative games. In: Hammer G, Pallaschke D Selected topics in operations research and mathematical economics. (ed) Springer-Verlag, Berlin, pp 252–261

    Google Scholar 

  • Ichiishi T (1981) Super-modularity: Applications to convex games and to the greedy algorithm for LP. Journal of Economic Theory 25:283–286

    Google Scholar 

  • Littlechild SC, Owen G (1973) A simple expression for the Shapley value in a special case. Management Science 20:370–372

    Google Scholar 

  • Muto S (1979) Generalizedk-quota solutions for (N, k) games. International Journal of Game Theory 8:165–173

    Google Scholar 

  • Rosenmüller J (1977) Extreme games and their solutions. Lecture Notes in Economics and Mathematical Systems 145. Springer-Verlag, Berlin

    Google Scholar 

  • Shapley LS (1971) Cores of convex games. International Journal of Game Theory 1:11–26

    Google Scholar 

  • Tijs SH (1981) Bounds for the core and theτ-value. In: Moeschlin O, Pallaschke D (ed) Game theory and mathematical economics. North-Holland Publ Cie, Amsterdam, pp 123–132

    Google Scholar 

  • von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

    Google Scholar 

  • Weber RJ (1978) Probabilistic values for games. Cowles Foundation Discussion Paper No. 471R. Yale University, New Haven, Connecticut

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driessen, T.S.H. k-convexn-person games and their cores. Zeitschrift für Operations Research 30, A49–A64 (1986). https://doi.org/10.1007/BF01918631

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01918631

Keywords