Abstract
For any natural numbersk andn, the subclass ofk-convexn-person games is introduced. In casek=n, the subclass consists of the convexn-person games. Ak-convexn-person game is characterized in several ways in terms of the core and certain marginal worth vectors. The marginal worth vectors of a game are described in terms of an upper bound for the core and the corresponding gap function.
It is shown that thek-convexity of ann-person gamev is equivalent to
-
(i)
all marginal worth vectors ofv belong to the core ofv; or
-
(ii)
the core ofv is the convex hull of the set consisting of all marginal worth vectors ofv; or
-
(iii)
the extreme points of the core ofv are exactly the marginal worth vectors ofv.
Examples ofk-convexn-person games are also treated.
Zusammenfassung
Für natürliche Zahlenk undn wird die Unterklasse derk-konvexenn-Personen Spiele eingeführt. Im Fallek=n besteht die Unterklasse aus den konvexenn-Personen Spielen. Eink-konvexesn-Personen Spiel wird auf verschiedene Weise durch den Kern und gewisse Vektoren der Marginalwerte charakterisiert. Die Vektoren der Marginalwerte des Spieles werden durch eine obere Schranke für den Kern und die zugehörige GAP-Funktion beschrieben. Es wird gezeigt, daß diek-Konvexität einesn-Personen Spielesv äquivalent ist mit den Aussagen:
-
(i)
Alle Vektoren von Marginalwerten vonv gehören zum Kern vonv; oder:
-
(ii)
Der Kern vonv ist die konvexe Hülle der Menge aller Vektoren von Marginalwerten vonv; oder
-
(iii)
Die Eckpunkte des Kerns vonv entsprechen genau den Vektoren der Marginalwerte vonv.
Ferner werden Beispiele fürk-konvexen-Personen Spiele behandelt.
Similar content being viewed by others
References
Driessen TSH (1984) Cores ofk-convexn-person games. Report 8433. Department of Mathematics, Catholic University, Nijmegen, The Netherlands
Driessen TSH (1985) Properties of 1-convexn-person games. Operations Research Spektrum 7:19–26
Driessen TSH, Tijs SH (1982) Semiconvex games and theτ-value. Report 8228. Department of Mathematics, Catholic University, Nijmegen, The Netherlands (To appear in International Journal of Game Theory)
Driessen TSH, Tijs SH (1983) Theτ-value, the nucleolus and the core for a subclass of games. Methods of Operations Research 46:395–406
Driessen, TSH, Tijs SH (1984) Extensions and modifications of theτ-value for cooperative games. In: Hammer G, Pallaschke D Selected topics in operations research and mathematical economics. (ed) Springer-Verlag, Berlin, pp 252–261
Ichiishi T (1981) Super-modularity: Applications to convex games and to the greedy algorithm for LP. Journal of Economic Theory 25:283–286
Littlechild SC, Owen G (1973) A simple expression for the Shapley value in a special case. Management Science 20:370–372
Muto S (1979) Generalizedk-quota solutions for (N, k) games. International Journal of Game Theory 8:165–173
Rosenmüller J (1977) Extreme games and their solutions. Lecture Notes in Economics and Mathematical Systems 145. Springer-Verlag, Berlin
Shapley LS (1971) Cores of convex games. International Journal of Game Theory 1:11–26
Tijs SH (1981) Bounds for the core and theτ-value. In: Moeschlin O, Pallaschke D (ed) Game theory and mathematical economics. North-Holland Publ Cie, Amsterdam, pp 123–132
von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton
Weber RJ (1978) Probabilistic values for games. Cowles Foundation Discussion Paper No. 471R. Yale University, New Haven, Connecticut
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Driessen, T.S.H. k-convexn-person games and their cores. Zeitschrift für Operations Research 30, A49–A64 (1986). https://doi.org/10.1007/BF01918631
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01918631