Abstract
In previous papers many different classes and constructions of greedoids have been defined and studied. This paper documents inclusion relations among all subclasses of greedoids which are known so far. It will be shown that all inclusion relations are proper and that all but one subclasses of interval greedoids are distinct.
Zusammenfassung
In früheren Arbeiten wurden viele verschiedene Klassen und Konstruktionen für Greedoide eingeführt und studiert. In dieser Arbeit werden alle bekannten Inklusionsbeziehungen zwischen Unterklassen von Greedoiden dokumentiert. Es wird gezeigt, daß alle Inklusionsbeziehungen echt und alle Unterklassen mit einer Ausnahme tatsächlich verschieden sind.
Similar content being viewed by others
References
Björner, A. [1985]:On matroids, groups and exchange languages. In: L. Lovász and A. Recski (eds): Matroid Theory and its Applications. Conference Proceedings, Szeged, September 1982. Colloquia Mathematica Societatis Jonós Bolyai. Vol. 40, p. 25–60. Amsterdam, Oxford, New York: North Holland 1985.
Crapo, H. [1965]:Single-element extensions of matroids. J. Research Nat. Bureau of Standards 69B (1965), p. 55–65.
Dunstan, F.D.J., Ingleton, A.W. and Welsh, D.J.A. [1912]Supermatroids in: D.A.J. Welsh and D.R. Woodall (eds.) Combinatorics. Institute of Math., and Its Appl. Ser. Academic Press, London, New York 1972, p. 72–123.
Faigle, U. [1980]:Geometries on partially ordered sets. J. Comb. Theory, Series B, 28 (1980), p. 26–51.
Korte, B. and Lovász, L. [1981]:Mathematical structures underlying greedy algorithms: F. Gécseg (ed.): Fundamentals of Computation Theory. Lecture Notes in Computer Science 117. Berlin, Heidelberg, New York: Springer 1981, p. 205–209.
Korte, B. and Lovász, L. [1983]:Structural properties of greedoids. Combinatorica 3, 3–4, (1983), p. 359–374.
Korte, B. and Lovász, L. [1984a]:Greedoids, a structural framework for the greedy algorithm. in: W.R. Pulleyblank (ed.): Progress in Combinatorial Optimization. Proceedings of the Silver Jubilee Conference on Combinatorics, Waterloo, June 1982. Academic Press, London, New York, San Francisco 1982, p. 221–243.
Korte, B. and Lovász, L. [1984b]:Shelling structures, convexity and a happy end. in: B. Bollobás (ed.): Graph Theory and Combinatorics. Proceedings of the Cambridge Combinatorial Conference in Honour of Paul Erdös. Academic Press, London 1984, p. 219–232.
Korte, B. andLovász, L. [1985a]:Polymatroid greedoids. Journal of Comb. Theory B, 38 (1985), p. 41–72.
Korte, B. and Lovász, L. [1985b]:Posets, matroids and greedoids. In: L. Lovász and A. Recski (eds): Matroid Theory and its Applications. Conference Proceedings, Szeged, September 1982. Colloqua Mathematica Sociotatis Janós Bolyai. Vol. 40, p. 239–265. Amsterdam, Oxford, New York: North Holland 1985.
Author information
Authors and Affiliations
Additional information
Supported by the joint research project “Algorithmic Aspects of Combinatorial Optimization” of the Hungarian Academy of Sciences (Magyar Tudományos Akadémia) and the German Research Association (Deutsche Forschungsgemeinschaft, SFB 21). Part of this research was done while the first author was visiting the Department of Combinatorics and Optimization, University of Waterloo.
Rights and permissions
About this article
Cite this article
Korte, B., Lovász, L. Relations between subclasses of greedoids. Zeitschrift für Operations Research 29, 249–267 (1985). https://doi.org/10.1007/BF01918757
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01918757