Abstract
We consider economic decision problems under uncertainty consisting of choosing an optimal decisionX, so as to maximize to expected value of an objective function depending on a stochastic parameterp. The paper establishes an optimal policy intervalX A ⩽X 1 ⩽X B, where the boundsX A,X B are given in terms of simple parameters of the distribution ofp, in particular the meanμ, and the mean absolute deviationd=E ¦p−μ ¦. The convexity assumptions needed to establish such bounds are shown to hold naturally in some classical problems of production under uncertainty.
Zusammenfassung
Wir betrachten wirtschaftliche Entscheidungsprobleme mit Unsicherheit, in denen eine optimale EntscheidungX so getroffen werden soll, daß der Erwartungswert einer Zielfunktion, abhängig von einem stochastischen Parameterp, maximiert werden soll. In dieser Arbeit wird ein IntervallX A ⩽X 1 ⩽X B für die optimale Politik angegeben, wobei die SchrankenX A,X B durch einfache Größen der Verteilung vonp ausgedrückt werden, im besonderen durch den Mittelwertμ und die mittlere absolute Abweichungd=E ¦p−μ ¦. Ferner wird gezeigt, daß die für die Herleitung der Schranken benötigten Konvexitätsannahmen in natürlicher Weise für einige klassische Produktionsprobleme mit Unsicherheit gelten.
Similar content being viewed by others
References
Arrow, K.J.,Essays in the Theory of Risk-Bearing, Markham, Chicago 1971.
Ben-Tal, A., and Hochman E., “More Bounds on the Expectation of a Convex Function of a Random Variable”,Journal of Applied Probability, 9, 1972, 803–812.
Fama, Eugene F., “Mandelbrot and the Stable Paretian Hypothesis”,Journal of Business, 36 1963, 420–429.
Fielitz, B.D., and Smith, E.W., “Asymmetric Stable Distributions of Stock Price Changes”,Journal of American Statistical Association, 67, 1972, 813–814.
Gradshteyn, I.S. and Ryzhik, I.M.,Tables of Integrals, Series and Products (corrected and enlarged edition) Academic Press, N.Y., 1980.
Madansky, A., “Bounds of the Expectations of a Convex Function of a Multivariate Random Variable”,Annals of Mathematical Statistics, 30, 1959, 743–746.
Mandelbrot, B., “The Pareto-Levy Law and the Distribution of Income”,International Economic Review, 1 1960, 79–106.
Mandelbrot, B., “The Variation of Certain Speculative Prices”,Journal of Business, 36 1963, 394–419.
Mandelbrot, B. and Taylor, H.M., “On the Distribution of Stock Price Differences”,Operations Research, 15 1967, 1057–1062.
Press, S.J., “A Compound Events Model for Security Prices”,Journal of Business, 40 1968, 317–335.
Press, S.J., “Multivariate Stable Distributions”,Journal of Multivariate Analysis, 2 1912, 444–462.
Roll, R.,The Efficient Market Model Applied to U.S. Treasure Bill Rates. Doctoral dissertation, Graduate School of Business, University of Chicago 1968.
Sandmo, A., “On the Theory of the Competitive Firm under Price Uncertainty”, American Economic Review, 61 1971, 65–73.
Rotchild, M., and Stiglitz, J.E., “Increasing Risk: II. Its Economic Consequences”,Journal of Economic Theory, 3 1971, 66–84.
Zolotarev, V.M., “Integral Transformations of Distributions and Estimates of Parameters of Multidimensional Spherically Symmetric Stable Laws”, inContributions to Probability (eds. (Gani, J. and Rohatgi, V.K.), Academic Press, 1981, 283–305.
Author information
Authors and Affiliations
Additional information
Supported by BARD Project No. I-10-79 and by Technion VPR Fund-Lawrence Deutsch Research Fund.
Rights and permissions
About this article
Cite this article
Ben-Tal, A., Hochman, E. Approximation of expected returns and optimal decisions under uncertainty using mean and mean absolute deviation. Zeitschrift für Operations Research 29, 285–300 (1985). https://doi.org/10.1007/BF01918761
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01918761