Summary
A number of important applied probability models, many of which can be interpreted as networks of queues, lead to a discrete probability distribution of states exhibiting a so-called “product form”. This phenomenon is explained by a certain form of “decomposability”, and a definition of the notion of product form emerges.
Zusammenfassung
Bei einer Reihe von wichtigen Modellen aus dem Anwendungsbereich der Wahrscheinlichkeitstheorie, viele davon als Netzwerke von Warteschlangen interpretierbar, treten diskrete Wahrscheinlichkeitsverteilungen auf, deren Gestalt von einer „Produktform” ist. Dieses Phänomen wird durch eine gleichzeitig auftretende Art der „Zerlegbarkeit“ erklärt, woraus eine Definition des Begriffs der „Produktform“ resultiert.
Similar content being viewed by others
References
Baskett, F., K.M. Chandy, R.R. Muntz andF.G. Palacios: Open Closed, and Mixed Networks of Queues with Different Classes of Customers. Journal of the ACM, 1975, 248–260.
Courtois, P.J.: Decomposability. New York 1977.
Gordon, W.T., andG.F. Newell: Closed Queueing Systems with Exponential Servers. Operations Res.15, 1967, 252–265.
Schassberger, R.: Insensitivity of steady-state distributions of generalized semi-Markov processes. Part I, Ann. Prob.5, 1977, 87–99.
—: Insensitivity of steady-state distributions of generalized semi-Markov processess. Part II, Ann. Prob.6, 1978a, 85–93.
—: Insensitivity of steady-state distributions of generalized semi-Markov processes with speeds, Adv. Appl. Prob.,10, 1978b, 836–851.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schassberger, R. A definition of discrete product form distributions. Zeitschrift für Operations Research 23, 189–195 (1979). https://doi.org/10.1007/BF01919483
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01919483