Skip to main content

Advertisement

Log in

Consecutive colorings of graphs

  • Papers
  • Published:
Zeitschrift für Operations Research Aims and scope Submit manuscript

Abstract

In a simple graphG=(X.E) a positive integerc i is associated with every nodei. We consider node colorings where nodei receives a setS(i) ofc i consecutive colors andS(i)S(j)=Ø whenever nodesi andj are linked inG. Upper bounds on the minimum number of colors needed are derived. The case of perfect graphs is discussed.

Zusammenfassung

In einem schlichten GraphenG=(X, E) gibt man jedem Knotenpunkti einen positiven ganzzahligen Wertc i. Wir betrachten Färbungen der Knotenpunkte, bei denen jeder Knotenpunkti eine MengeS(i) vonc i konsekutiven Farben erhält mitS(i)S(j)=Ø wenn die Kante [i.j] existiert. Obere Grenzen für die minimale Anzahl der Farben solcher Färbungen werden hergeleitet. Der Fall der perfekten Graphen wird auch kurz diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

References

  1. Golumbic MC (1980) Algorithmic graph theory and perfect graphs. Academic Press

  2. Cangalovic M (1987) Exact colouring algorithm for vertex-composite graphs applied to timetable problems with multiple period lessons. Memorandum No 631. Department of Applied Mathematics, Twente University of Technology, Enschede

    Google Scholar 

  3. Matula DW. Beck LL (1983) Smallest-last ordering and clustering and graph coloring algorithms. J ACM 30:417–427

    Google Scholar 

  4. Preissmann M, de Werra D (1985) A note on strong perfectness of graphs. Mathematical Programming 31:321–326

    Google Scholar 

  5. Szekeres G, Wilf H (1968) An inequality for the chromatic number of a graph. J Combinatorial Th 4:1–3

    Google Scholar 

  6. Welsh DJA, Powell MB (1967) An upper bound on the chromatic number of a graph and its application to timetabling problems. Computer J 10:85–87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Werra, D., Hertz, A. Consecutive colorings of graphs. Zeitschrift für Operations Research 32, 1–8 (1988). https://doi.org/10.1007/BF01920567

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01920567

Key words

Navigation