Abstract
For a large class of time functionsT, we show the following: Assuming that there is some parallel processor which requiresθ(T(j)) time units when searching the minimum amongj arbitrary points with respect to an arbitrary rotational ordering. Then the planar Convex Hull Problem forn points is of the complexityθ(nT(n)).
Also our auxiliar results are significant: We shall deal with a graph theoretical lemma, and we shall prove a result which is similar to those of [Frie 72] and [Schm 83]: The worst-case complexity of the sorting problem is Ω(n log (n)) even if the operations “+”, “-”, “×”, “/” and queries ‘p(x) ∈ A?’ are possible where the rational functionp and the setA ⊂IR are arbitrary. At last, we describe the architecture of a network which actually searches polar minima inθ(T(j)) time units.
Zusammenfassung
Für eine große Klasse von ZeitfunktionenT zeigen wir: Angenommen, ein paralleler Prozessor ermöglicht inθ(T(j)) Zeiteinheiten die Suche nach dem kleinsten vonj beliebigen Punkten bezüglich einer beliebigen polaren Ordnung; dann istn T(n) eine größenordnungsmäßig scharfe worst-case-Schranke des Convex-Hull-Problems fürn Punkte in der Ebene.
Auch die dazu verwendeten Hilfsresultate sind von Interesse: Neben einem graphentheoretischen Lemma beweisen wir ein ähnliches Resultat wie in [Frie 72] und [Schm 83]: Auch dann ist Ω(n log (n) eine untere Komplexitätsschranke für das Sortieren, wenn die vier Grundrechenarten sowie Abfragen ‘p(x) ∈ A?’ möglich sind, wobei die gebrochenrationale Funktionp und die MengeA ⊂IR beliebig sind. Schließlich beschreiben wir noch ein Netzwerk, welches die oben beschriebene Minimum-Suche tatsächlich inθ(T(j)) Zeiteinheiten bewältigt.
Similar content being viewed by others
References
Akl SG (1979) Two remarks on a convex hull algorithm. Info Proc Lett 8:108–109
Friedman N (1972) Some results on the effect of arithmetics on comparison problems. Proc. 13th IEEE Symp. on Switching and Automata Theory, pp. 139–143
Huckenbeck U (1986) Geometrische Maschinenmodelle. PhD thesis, Universität Würzburg
Jarvis RA (1973) On the identification of the convex hull of a finite set of points in the plane. Info Proc Lett 2:18–21
Preparata FP, Shamos MI (1985) Computational geometry, an introduction. Springer
Schmitt A (1983) On the number of relational operators necessary to compute certain functions of real variables. Acta Informatica 19:297–304
Shamos MI (1978) Computational geometry. PhD thesis, Yale University, New Haven, Conneticut
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Huckenbeck, U. On the complexity of convex hull algorithms if rotational minima can be found very fast. Zeitschrift für Operations Research 32, 187–199 (1988). https://doi.org/10.1007/BF01928920
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF01928920