Skip to main content
Log in

A systolic generation of combinations

  • Part I Computer Science
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A parallel algorithm for generating all combinations ofm (m fixed) items out of anyn given items in lexicographic order is presented. The computational model is a linear systolic array consisting ofm identical processing elements. This algorithm requires {ie23-1} time-steps for the {ie23-2} combinations, that is, one output at each time-step. Since all processing elements perform the same program, it is suitable for VLSI implementation. Based on mathematical induction, such an algorithm is proved to be correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Reingold, J. Nievergelt, and N. Deo,Combinatorial Algorithms: Theory and Practice, Prentice-Hall INC. Englewood Cliffs, New Jersey, 1977.

    Google Scholar 

  2. B. Chan and S. G. Akl,Generating combinations in parallel, BIT 26 (1986), pp. 2–6.

    MathSciNet  Google Scholar 

  3. S. G. Akl,Parallel Sorting Algorithms, Academic Press, Orlando, Florida, 1985.

    Google Scholar 

  4. G. H. Chen and M. S. Chern,Parallel generating of permutations and combinations, BIT 26 (1986), pp. 277–283.

    MathSciNet  Google Scholar 

  5. C. Y. Tag, M. W. Du, and R. C. T. Lee,Parallel generation of combinations, in Proc. Int'l. Comput. Symp., Taipei, Taiwan, 1984, pp. 1006–1010.

  6. H. T. Kung,The structure of parallel algorithms, inAdvances in Computers, M. C. Yovits, Ed. Academic Press, New York, 1980, pp. 65–112.

    Google Scholar 

  7. H. S. Stone,Parallel computers, inIntroduction to Computer Architectures, 1980.

  8. I. Semba,An efficient algorithm for generating all k-subsets (1 ≤ k ≤ m ≤ n) of the set {1,2,...,n} in lexicographic order, Journal of Algorithms 5, 1984, pp. 281–283.

    Google Scholar 

  9. R. Sedgewick,Permutation generation methods, Computing Surveys, Vol. 9, No. 2. 1977, pp. 137–164.

    Article  Google Scholar 

  10. V. Zakharov,Parallelism and array processing IEEE Trans. on Computers, Vol. C-33, No. 1, 1984, pp. 45–78.

    Google Scholar 

  11. D. I. Moldovan,On the design of algorithms for VLSI systolic arrays, Proc. IEEE, Vol. 71, No. 1, 1983, pp. 113–120.

    Google Scholar 

  12. D. I. Moldovan and J. A. B. Fortes,Partitioning and mapping algorithms into fixed size systolic arrays, IEEE Trans. on Computers, Vol. C-35, No. 12.

  13. S. Sahni,Approximate algorithms for the 0/1 knapsack problem, J. ACM, Vol. 22, No. 1, 1975, pp. 115–124.

    Article  Google Scholar 

  14. G. H. Chen, M. S. Chern, and R. C. T. Lee,A new systolic architecture for convex hull and half-plane intersection problems, BIT 27, 1987, pp. 141–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CJ., Tsay, JC. A systolic generation of combinations. BIT 29, 23–36 (1989). https://doi.org/10.1007/BF01932702

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01932702

CR categories

Keywords and phrases

Navigation