Skip to main content
Log in

A parallel algorithm for the monadic unification problem

  • Part I Computer Science
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The monadic unification problem is introduced. AnO(log2 n) parallel algorithm to solve this problem is given and shown to be correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Cook,An overview of computational complexity, Comm. ACM 26, 6 (June 1983), 400–408.

    Google Scholar 

  2. R. M. Burstall and J. Darlington,A transformation system for developing recursive programs, J. ACM 24, 1 (Jan. 1977), 44–67.

    Google Scholar 

  3. C. Dwork, P. C. Kanellakis and J. C. Mitchell,On the sequential nature of unification. Unpublished, (Nov. 1983).

  4. S. Fortune and J. Wyllie,Parallelism in random access machines, Proc. 10th Ann. ACM Symp. on Theory of Computing, (1978), 114–118.

  5. D. S. Hirschberg, A. K. Chandra and D. V. Sarwate,Computing connected components on parallel computers, Comm. ACM 22, 8 (1979), 461–464.

    Google Scholar 

  6. D. Kapur, M. S. Krishnamoorthy and P. Narendran,A new linear unification algorithm, GE Report No. 82CRD100, (April 1982).

  7. A. Martelli and U. Montanari,An efficient unification algorithm. Trans. on Prog. Lang. and Syst. (ACM)4, 2 (Apr. 1982), 258–282.

    Google Scholar 

  8. M. S. Paterson and M. N. Wegman,Linear unification, J. Comput. Syst. Sci. 16, 2 (Apr. 1978), 158–167.

    Google Scholar 

  9. J. A. Robinson,Computational logic: The unification computation. InMachine Intelligence, vol. 6, B. Meltzer and D. Michie (Eds.). Edinburgh Univ. Press, Edinburgh, Scotland, 1971, pp. 63–72.

    Google Scholar 

  10. J. A. Robinson,A machine-oriented logic based on the resolution principle. J. ACM 12, 1 (Jan. 1965), 23–41.

    Google Scholar 

  11. Y. Shiloach and U. Vishkin,An O(log n) parallel connectivity algorithm, J. of Algorithms 3, (1982), 57–67.

    Google Scholar 

  12. J. Wyllie,The complexity of parallel computations, Cornell U. TR 79-387, (Aug. 1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auger, I.E., Krishnamoorthy, M.S. A parallel algorithm for the monadic unification problem. BIT 25, 302–306 (1985). https://doi.org/10.1007/BF01934375

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01934375

Keywords

Navigation