Skip to main content
Log in

Multidimensional processing: Nonlinear optics and computing

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to overview some of the trends and directions in computing, as performed by optical hardware, resulting from the demands made by multidimensional signal processing. Optical information processing or optical computing is a vast field and some of the more significant issues are discussed here. We discuss future developments and architectural consequences for such potentially highly parallel and interconnected processing systems. Particular emphasis is placed on energy and speed considerations, associated with the use of nonlinear optical materials in optical systems and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbiss, J.B., Brames, B.J., Byrne, C.L., and Fiddy, M.A., “Image restoration for a fully connected architecture,”Opt. Lett. vol. 15, p. 688, 1990.

    Google Scholar 

  • App. Opt., 28, issue 22 on Spatial Light Modulators, 1989.

  • Anderson, D.Z., “Competitive and cooperative dynamics in nonlinear optical circuits,” inAn Introduction to Neural and Electronic Networks, (S.F. Zornetzer, et al. eds.) Academic Press: Reading, MA, pp. 349–362, 1990.

    Google Scholar 

  • Arrathoon R.,Optical Computing. Marcel Dekker: New York, 1989.

    Google Scholar 

  • Arsenault, H., Szoplik, T., and Macukow, B.Optical Processing and Computing. Academic Press, San Diego, 1989.

    Google Scholar 

  • Bennett,IBM J. Res. Dev. vol. 17, p. 525, 1973.

    Google Scholar 

  • Berra, P.B. et al. “Optics and supercomputing,”Proc. IEEE 77 p. 1797, 1989.

    Google Scholar 

  • Bloemer, M.J., Haus, J.W., and Ashley, P.R., “Degenerate four wave mixing in colloidal gold as a function of particle size,”JOSA B7, p. 790, 1990.

    Google Scholar 

  • Cathey, W.T., Wagner, K., and Miceli, W.J. “Digital computing with optics,”Proc. IEEE 77, 1558, 1989.

    Google Scholar 

  • Caulfield, H.J. et al. “Optical Correlators,”Photonics Spectra, pp. 117–121, Dec. 1987.

  • Caulfield, H.J., Kinser, J., and Rogers, S.K. “Optical neural networks,”Proc. IEEE 77 p. 1573, 1989.

    Google Scholar 

  • Caulfield, H.J. and Gheen, G. “Selected papers on Optical Computing,”SPIE Milestone Series, vol. 1142, 1989.

  • Caulfield, H.J., and Shamir, J., “Wave-particle-duality processors: characteristics, requirements and applications,”JOSA A7, p. 1314, 1990.

    Google Scholar 

  • Caulfield, H.J., Shamir, J., Ludman, J.E. and Greguss, P., “Reversibility and energetics in optical computing,”Opt. Lett. vol. 15, p. 912, 1990.

    Google Scholar 

  • Caulfield, H.J., “Space-time complexity in optical computing,”Multidimensional Systems and Signal Processing vol. 2, pp. 373–378, 1991.

    Google Scholar 

  • Cutrona, L.J., et al. “On the application of coherent processing techniques to synthetic aperture radar,”Proc. IEEE 54, p. 1026, 1966.

    Google Scholar 

  • Feinberg, J., “Self-pumped, continuous-wave phase conjugator using internal reflection,”Opt. Lett. vol. 7, p. 486, 1982.

    Google Scholar 

  • Feitelson, D.G.,Optical Computing. MIT Press: Cambridge, MA, 1988.

    Google Scholar 

  • Feldman, M.R. et al. “Comparison between optical and electrical interconnects based on power and speed considerations,”App. Opt. vol. 27, p. 1742, 1988.

    Google Scholar 

  • Flannery, D.L. and J.L. Horner, “Fourier optical signal processors,”Proc. IEEE 77, p. 1511, 1989.

    Google Scholar 

  • Goodman, J.W., et al. “Optical interconnects for VLSI systems,”Proc. IEEE 72, p. 850, 1984.

    Google Scholar 

  • Goodman, J.W., “Fan-in and fan-out with optical interconnections,”Opt. Acta. vol. 32, p. 1489, 1985.

    Google Scholar 

  • Goodman, J.W., “A short history of the field of optical computing,” in (Wherrett, B.S. and F.A.P. Tooley, ed.)Optical Computing, Proc. 34th Scottish Universities Summer School in Physics, Edinburgh University Press, pp. 7–21, 1989.

  • Goutzoulis, A.P., “Digital electronics meets its match,”IEEE Spectrum, p. 21, August 1988.

  • Gregory, D.A. and Kirsch, J.C. “Compact optical correlators,”SPIE 960, p. 66, 1988.

    Google Scholar 

  • Gunter, P., and Huignard, J.-P., “Photorefractive Materials and Their Applications I & II,” Springer-Verlag, vols. 61 and 62, (1988); see alsoIEEE QE-25, issue 3, pp. 312–647, 1989, and also,JOSA B7, issue 12, 1990.

  • Hache, F., Ricard, D., and Flytzanis, C. “Optical nonlinarities of small metal particles: surface mediated resonance and quantum size effects,”JOSA B3, p. 1647, 1986.

  • Hopf, F.A. and Stegeman, G.I., “Applied Classical Electrodynamics, Vol. 2: Nonlinear Optics,” Wiley, New York, 1986.

    Google Scholar 

  • Horner, J.L.,Optical Signal Processing. Academic Press: San Diego, 1987.

    Google Scholar 

  • Huang, A., “Optical Computer: is concept becoming reality,”SPIE OE Reports 1, p. 75, 1990.

    Google Scholar 

  • Hwang, H., “Parallel processing with supercomputers,”Proc. IEEE OC-75, p. 1348, 1987.

    Google Scholar 

  • Int. J. of Optoelectronics, 5, issue 2 on Optical Materials, Devices and Systems for Computing, 1990.

  • Jenkins, B.K. et al. “Architectural implications of a digital optical processor,”App. Opt. 23, p. 3465, 1984.

    Google Scholar 

  • Jenkins, B.K., “Sequential optical logic implementation,”App. Opt., p. 3455, 1984.

  • Keyes, R.W., “What makes a good computer device?,”Science 230, p. 138, 1985.

    Google Scholar 

  • Keyes, R.W., “Making light work of logic,”Nature vol. 340, p. 19, 1989.

    Google Scholar 

  • Khanna, T., “Foundations of neural networks,” Addison-Wesley, Reading, MA, 1990.

    Google Scholar 

  • Kitayama, K. and Ito, F., “Optical signal processing using photorefractive crystals,”Multidimensional Systems and Signal Processing vol. 2, pp. 401–419, 1991.

    Google Scholar 

  • Kostuk, R.K., Goodman, J.W., and Hesselink, L., “Optical imaging applied to microelectronic chip-to-chip interconnection,”App. Opt. 24, p. 2851, 1985.

    Google Scholar 

  • Lai, H.-S., Leon, R., Lin, F.C. and Fiddy, M.A. “Observations ofx 3 in aqueous suspensions of colloidal gold,” submitted toOpt. Lett.

  • Lee, J.N. and VanderLugt, A. “Acoustooptic signal processing and computing,”Proc. IEEE 77, p. 1528, 1989.

    Google Scholar 

  • Lin, F.C. and Fiddy, M.A., “Optimization of the self-pumped phase conjugation in BaTiO3 for optical image storage and readout,” submitted toJOSA-B, December, 1990.

  • Mandel, P., Smith, S.D., and Wherrett, B., “From optical bistability towards optical computing,” North Holland, New York, 1987.

    Google Scholar 

  • Milburn,Phys. Rev. Lett. vol. 62, p. 2124, 1989.

    Google Scholar 

  • Miller, D.A.B., “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,”Opt. Lett. vol. 14, p. 146, 1989.

    Google Scholar 

  • Miller, D.A.B., et al. “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation and self-linearized modulation,”IEEE QE-21 p. 1462, 1985.

    Google Scholar 

  • Neff, J.A., “Major initiatives for optical computing,”Opt. Eng. vol. 26, p. 2, 1987.

    Google Scholar 

  • Neff, J.A., Athale, R.A., and Lee, S.H. “Two-dimensional spatial light modulators: a tutorial,”Proc. IEEE 78, p. 826, 1990.

    Google Scholar 

  • Neeves, A.E. and Birnboim, M.H., “Composite structures for the enhancement of nonlinear optical susceptibility,”JOSA B6, p. 787, 1989.

    Google Scholar 

  • Opt. Eng., vol. 25, issue 1 on Digital Optical Computing, 1986.

  • “Optical Computing,” OSA Technical Digest Series, 9, Salt Lake City, 1989.

  • Opt. Eng., 28, issue 4 on Optical Computing, 1989.

  • Optics News, vol. 12, issue 4 on Optical Computing, 1986.

  • Osaktas, H.M. and Goodman, J.W. “Lower bound for the communication volume required for an optically interconnected array of points,”JOSA A7 p.2100, 1990.

    Google Scholar 

  • Owechko, Y., “Self-pumped optical neural networks,”OSA Optical Computing Digest, Salt Lake City, p. MD4-1, 1989.

  • Owechko, Y. and Soffer, B.H. “PRIMO: a programmable electrooptic processor,”Proc. ASILOMAR Conf. on Signals Systems and Computers, p. 297, 1989.

  • Prise, M.E., Striebl, N., and Downs, M.M. “Optical considerations in the design of digital optical computers,”Opt. and Quant. Electronics 20, p, 49, 1988.

    Google Scholar 

  • Psaltis D., et al. “Holography in artificial neural networks,”Nature 343, p. 325, 1990.

    Google Scholar 

  • Reynolds, G.O., et al.The Physical Optics Notebook: Tutorials in Fourier Optics. SPIE Press, Bellingham, 1989.

    Google Scholar 

  • Roland, C., see “Navy is exploring erasable optical media,”Photonics Spectra, p. 70, Dec. 1990.

  • Shamir, J. et al. “Optical computing and the Fredkin gate,”App. Opt. 25, p. 1604, 1986.

    Google Scholar 

  • Sluss, J.J. et al. “An introduction to integrated optics for computing,”IEEE Computer, p. 9, Dec. 1987.

  • Smith, P.W. et al. “Four wave mixing in an artificial Kerr medium,”Opt. Lett. 6, p. 294, 1981.

    Google Scholar 

  • Smith, P.W., “On the physical limits of digital optical switching and logic elements,”BSTJ 61, pp. 1975–1993, 1982.

    Google Scholar 

  • Soffer, B.H. et al. “Associative holographic memory with feedback using phase-conjugate mirrors,”Opt. Lett. vol. 11, p. 118, 1986.

    Google Scholar 

  • Steriti, R., Coleman, J. and Fiddy, M.A., “High resolution image reconstruction based on a fully connected architecture,”Inverse Problems vol. 6, p. 453, 1990.

    Google Scholar 

  • Streibl, N. et al. “Digital optics,”Proc. IEEE 77, p. 1954, 1989.

    Google Scholar 

  • Tompkin, W.R., Malcuit, M.S. and Boyd, R.W. “Enhancement of the nonlinear optical properties of fluorescin doped boric-acid glass through cooling,”App. Opt. 29, p. 3921, 1990.

    Google Scholar 

  • Wherrett, B.S. and Tooley, F.A.P.Optical Computing. Proc. 34th Scottish Universities Summer School in Physics, Edinburgh University Press: Edinburgh, 1989.

    Google Scholar 

  • Yeh, P. et al. “Photorefractive nonlinear optics and optical computing,”Opt. Eng. vol. 28, p. 328, 1989.

    Google Scholar 

  • Zhang, H.-J. et al. “Self-focusing and self-trapping in new types of Kerr media with large nonlinearities,”Opt. Lett. vol. 14, p. 695, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiddy, M.A. Multidimensional processing: Nonlinear optics and computing. Multidim Syst Sign Process 2, 359–372 (1991). https://doi.org/10.1007/BF01937171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01937171

Keywords

Navigation