Skip to main content
Log in

A parallel search algorithm for directed acyclic graphs

  • Part I Computer Science
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A parallel algorithm for depth-first searching of a directed acyclic graph (DAG) on a shared memory model of a SIMD computer is proposed. The algorithm uses two parallel tree traversal algorithms, one for the preorder traversal and the other for therpostorder traversal of an ordered tree. Each of these traversal algorithms has a time complexity ofO(logn) whenO(n) processors are used,n being the number of vertices in the tree. The parallel depth-first search algorithm for a directed acyclic graphG withn vertices has a time complexity ofO((logn)2) whenO(n 2.81/logn) processors are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Aho, J. E. Hopcroft and J. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading MA, (1974).

    Google Scholar 

  2. G. H. Barnes, M. Richard, M. Kato, D. Kuck, D. Slotnik and R. Stokes,The ILLIAC IV Computer, IEEE Trans. Comp., vol. C-17; 8, (1968), pp. 746–757.

    Google Scholar 

  3. A. K. Chandra,Maximal parellelism in matrix multiplication, RC-6193, IBM TJW Res. Centre, (1976).

  4. D. M. Eckstein and D. Alton,Parallel graph processing using depth-first search, Proc. Symp. Theo. Comp. Sci., (1977).

  5. F. Gavril,Merging with parallel processors, CACM, vol. 18, (1975), pp. 588–591.

    Google Scholar 

  6. E. Horowitz and S. Sahni,Fundamentals of Data Structures, Comp. Sci. Press Inc., Potomac, MD, (1977).

    Google Scholar 

  7. J. Ja' Ja' and J. Simon,Parallel algorithms in graph theory: Planarity testing, SIAM J. Comput., vol. 11; 2, (1982), pp. 314–328.

    Google Scholar 

  8. P. Kogge,Parallel solution of recurrence problems, IBM J. Res. and Dev., vol. 18, (1974), pp. 138–148.

    Google Scholar 

  9. K. Maruyama,On the parallel evaluation of polynomials, IEEE Trans. Comp., vol. C-22; 1, (1973), pp. 2–5.

    Google Scholar 

  10. F. P. Preparata,New parallel sorting schemes, IEEE Trans. Comp., vol. C-27; 7, (1978), pp. 669–673.

    Google Scholar 

  11. E. Reghbati and D. G. Corneil,Parallel computations in graph theory, SIAM J. Comput., vol. 7; 2, (1978), pp. 230–237.

    Google Scholar 

  12. C. Savage and J. Ja' Ja',Fast, efficient parallel algorithms for some graph problems, SIAM J. Comput., vol. 10; 4, (1981), pp. 682–691.

    Google Scholar 

  13. V. Strassen,Gaussian elimination is not optimal, Num. Math., vol. 13; 4, (1969), pp. 354–356.

    Google Scholar 

  14. R. J. Swan, S. Fuller and D. Siewiorek,Cm* a modular multi-microprocessor, Proc. AFIPS National, Comp. Conf., vol. 46, (1977), pp. 637–644.

    Google Scholar 

  15. R. E. Tarjan,Depth-first search and linear graph algorithms, SIAM J. Comput., vol. 1; 2, (1972), pp. 146–166.

    Google Scholar 

  16. R. E. Tarjan,Finding dominators in a directed graph, SIAM J. Comput., vol. 3; 1, (1974), pp. 62–89.

    Google Scholar 

  17. J. Wyllie,The complexity of parallel computations, Ph.D. Thesis, Tech. Rep. 79-387, Cornell University, Ithaca, NY, (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, R.K., Bhattacharjee, G.P. A parallel search algorithm for directed acyclic graphs. BIT 24, 133–150 (1984). https://doi.org/10.1007/BF01937481

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01937481

Keywords

Navigation