Abstract
Szilard languages of context-free grammars are studied. Especially, classical pumping, generalized pumping, Sokolowski's criterion, and semilinearity are considered as possible distinguishing properties between context-free and Szilard languages.
Similar content being viewed by others
References
C. Bader and A. Moura,A generalization of Ogden's lemma, J. ACM 29 (1982), 404–407.
M. Blattner and M. Latteux,Parikh-bounded languages, in:Lecture Notes in Computer Science 115, pp. 316–323, Springer-Verlag, (1982).
M. A. Harrison,Introduction to Formal Language Theory, Addison-Wesley, (1978).
M. Höpner,Über den Zusammenhang von Szilardsprachen und Matrixgrammatiken, Bericht Nr. 12, Institut für Informatik, Universität Hamburg, (1974).
S. Horvath,The family of languages satisfying Bar-Hillel's lemma, RAIRO Inf. Theor. 12 (1978), 193–199.
T. Kløve,Pumping languages, Intern. J. Computer Math. 6 (1977), 115–125.
E. Moriya,Associate languages and derivational complexity of formal grammars and languages, Inform. Control 22 (1973), 139–162.
A. Nijholt,A note on the sufficiency of Sokolowski's criterion for context-free languages, Inform. Process. Lett. 14 (1982), 207.
W. Ogden,A helpful result for proving inherent ambiguity, Math. Systems Theory 2 (1968), 191–194.
R. J. Parikh,On context-free languages, J. ACM 13 (1966), 570–581.
M. Penttonen,On derivation languages corresponding to context-free grammars, Acta Inform. 3 (1973), 285–291.
S. Sokolowski,A method for proving programming languages non context-free, Inform. Process. Lett. 7 (1978), 151–153.
D. S. Wise,A strong pumping lemma for context-free languages, Theoret. Comput. Sci. 3 (1976) 359–369.
Author information
Authors and Affiliations
Additional information
This work was supported by the Academy of Finland.
Rights and permissions
About this article
Cite this article
Mäkinen, E. On context-free and Szilard languages. BIT 24, 164–170 (1984). https://doi.org/10.1007/BF01937483
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01937483
Categories and Subject Descriptors
- F.4.2 [Mathematical Logic and Formal Languages]: Grammars and Other Rewriting Systems — grammar types
- F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages — classes defined by grammars or automata