Skip to main content
Log in

Canonical representations of partial 2- and 3-trees

  • Algorithm Theory
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We give algorithms constructing canonical representations of partial 2-trees (series parallel graphs) and partial 3-trees. The algorithms can be implemented in log-linear space, or in linear time using quadratic space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Aho, J. E. Hopcroft and J. D. Ullman,Design and Analysis of Computer Algorithms, Addison-Wesley (1972).

  2. S. Arnborg,Efficient algorithms for combinatorial problems on graphs with bounded decomposability — a survey, BIT 25(1985), 2–33.

    Google Scholar 

  3. S. Arnborg, D. G. Corneil and A. Proskurowski,Complexity of finding embeddings in a k-tree, SIAM J. Alg. and Discr. Methods 8(1987), 277–287.

    Google Scholar 

  4. S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese,An algebraic theory of graph reduction, submitted.

  5. S. Arnborg and A. Proskurowski,Characterization and recognition of partial 3-trees, SIAM J. Alg. and Discr. Methods 7(1986), 305–314.

    Google Scholar 

  6. S. Arnborg and A. Proskurowski,Linear time algorithms for NP-hard problems on graphs embedded in k-trees, Discr. Appl. Math. 23(1989), 11–24.

    Google Scholar 

  7. H. L. Bodlaender,Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, Proceedings of SWAT'88, Springer-Verlag LNCS 318(1988), 227–232.

    Google Scholar 

  8. J. A. Bondy and U. S. R. Murty,Graph Theory with Application, North Holland (1976).

  9. K. S. Booth,Finding a lexicographic least shift of a string, Information Processing Letters 10(1980), 240–242.

    Google Scholar 

  10. C. J. Colbourn and K. S. Booth,Linear time automorphism algorithms for trees, interval graphs, and planar graphs, SIAM J. Computing 10(1981), 203–225.

    Google Scholar 

  11. B. Courcelle,The monadic second order logic of graphs I: Recognizable sets of finite graphs, Information and Computation 85(1990), 12–75.

    Google Scholar 

  12. I. S. Filotti and J. N. Mayer,A polynomial-time algorithm for determining the isomorphism of graphs of bounded genus, Proc. 12th ACM Symp. on Theory of Computing (1980), 236–243.

  13. M. Fontet,A linear algorithm for testing isomorphism of planar graphs, Proc. 3rd Int. Conf. Automata, Languages, Programming, Springer-Verlag LNCS (1976), 1411–423.

  14. M. R. Garey and D. S. Johnson,Computers and Intractability, W. H. Freeman and Company, San Francisco (1979).

    Google Scholar 

  15. J. E. Hopcroft and J. K. Wong,A linear time algorithm for isomorphism of planar graphs, Proc. 6th ACM Symp. Theory of Computer Science (1974), 172–184.

  16. J. Lagergren,Efficient parallel algorithms for tree-decomposition and related problems. Proceedings of IEEE FoCS 1990.

  17. J. Lagergren,The non-existence of reduction rules giving an embedding in a k-tree, to appear inAnnals of Discrete Mathematics.

  18. E. M. Luks,Isomorphism of graphs of bounded valence can be tested in polynomial time, JCSS 25(1982), 42–65.

    Google Scholar 

  19. G. L. Miller,Isomorphism testing for graphs with bounded genus, Proc. 12th ACM Symp. on Theory of Computing (1980), 225–235.

  20. G. L. Miller,Isomorphism testing and canonical forms for k-contractible graphs, Proc. Foundations of Computation Theory, Springer-Verlag LNCS 158 (1983), 310–327.

    Google Scholar 

  21. A. Proskurowski,Recursive graphs, recursive labelings and shortest paths, SIAM J. Computing 10(1981), 391–397.

    Google Scholar 

  22. A. Proskurowski,Separating subgraphs in k-trees: cables and caterpillars, Discrete Mathematics 49(1984), 275–285.

    Google Scholar 

  23. N. Robertson and P. D. Seymour,Graph minors V, excluding a planar graph, J. Combinatorial Theory, Ser. B, 41(1986), 92–114.

    Google Scholar 

  24. D. J. Rose,On simple characterization of k-trees, Discrete Mathematics 7(1970), 317–322.

    Google Scholar 

  25. J. J. Rotman,The Theory of Groups (2nd ed.), Allyn and Bacon (1973).

  26. P. Scheffler,Linear time algorithms for NP-complete problems restricted to partial k-trees, Akad. Wiss. DDR Report R-MATH-03/87 (1987).

  27. Y. Shiloah,A fast equivalence-checking algorithm for circular lists, Information Processing Letters 8(1979), 236–238.

    Google Scholar 

  28. M. M. Syslo,Linear time algorithm for coding outerplanar graphs, in Beiträge zum Graphentheorie, Proceedings of Oberhof Conference 1977, H. Sachs (Ed.) (1978), 259–269.

  29. A. Wald and C. J. Colbourn,Steiner trees, partial 2-trees, and minimum IFI networks, Networks 13(1983), 159–167.

    Google Scholar 

  30. T. V. Wimer,Linear algorithms on k-terminal graphs, PhD. Thesis, Clemson University (1988).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a grant from the Swedish Natural Science Research Council.

Research supported in part by the Office of Naval Research Contract N00014-86-K-0419.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnborg, S., Proskurowski, A. Canonical representations of partial 2- and 3-trees. BIT 32, 197–214 (1992). https://doi.org/10.1007/BF01994877

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01994877

CR categories

Navigation