Abstract
We give algorithms constructing canonical representations of partial 2-trees (series parallel graphs) and partial 3-trees. The algorithms can be implemented in log-linear space, or in linear time using quadratic space.
Similar content being viewed by others
References
A. V. Aho, J. E. Hopcroft and J. D. Ullman,Design and Analysis of Computer Algorithms, Addison-Wesley (1972).
S. Arnborg,Efficient algorithms for combinatorial problems on graphs with bounded decomposability — a survey, BIT 25(1985), 2–33.
S. Arnborg, D. G. Corneil and A. Proskurowski,Complexity of finding embeddings in a k-tree, SIAM J. Alg. and Discr. Methods 8(1987), 277–287.
S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese,An algebraic theory of graph reduction, submitted.
S. Arnborg and A. Proskurowski,Characterization and recognition of partial 3-trees, SIAM J. Alg. and Discr. Methods 7(1986), 305–314.
S. Arnborg and A. Proskurowski,Linear time algorithms for NP-hard problems on graphs embedded in k-trees, Discr. Appl. Math. 23(1989), 11–24.
H. L. Bodlaender,Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, Proceedings of SWAT'88, Springer-Verlag LNCS 318(1988), 227–232.
J. A. Bondy and U. S. R. Murty,Graph Theory with Application, North Holland (1976).
K. S. Booth,Finding a lexicographic least shift of a string, Information Processing Letters 10(1980), 240–242.
C. J. Colbourn and K. S. Booth,Linear time automorphism algorithms for trees, interval graphs, and planar graphs, SIAM J. Computing 10(1981), 203–225.
B. Courcelle,The monadic second order logic of graphs I: Recognizable sets of finite graphs, Information and Computation 85(1990), 12–75.
I. S. Filotti and J. N. Mayer,A polynomial-time algorithm for determining the isomorphism of graphs of bounded genus, Proc. 12th ACM Symp. on Theory of Computing (1980), 236–243.
M. Fontet,A linear algorithm for testing isomorphism of planar graphs, Proc. 3rd Int. Conf. Automata, Languages, Programming, Springer-Verlag LNCS (1976), 1411–423.
M. R. Garey and D. S. Johnson,Computers and Intractability, W. H. Freeman and Company, San Francisco (1979).
J. E. Hopcroft and J. K. Wong,A linear time algorithm for isomorphism of planar graphs, Proc. 6th ACM Symp. Theory of Computer Science (1974), 172–184.
J. Lagergren,Efficient parallel algorithms for tree-decomposition and related problems. Proceedings of IEEE FoCS 1990.
J. Lagergren,The non-existence of reduction rules giving an embedding in a k-tree, to appear inAnnals of Discrete Mathematics.
E. M. Luks,Isomorphism of graphs of bounded valence can be tested in polynomial time, JCSS 25(1982), 42–65.
G. L. Miller,Isomorphism testing for graphs with bounded genus, Proc. 12th ACM Symp. on Theory of Computing (1980), 225–235.
G. L. Miller,Isomorphism testing and canonical forms for k-contractible graphs, Proc. Foundations of Computation Theory, Springer-Verlag LNCS 158 (1983), 310–327.
A. Proskurowski,Recursive graphs, recursive labelings and shortest paths, SIAM J. Computing 10(1981), 391–397.
A. Proskurowski,Separating subgraphs in k-trees: cables and caterpillars, Discrete Mathematics 49(1984), 275–285.
N. Robertson and P. D. Seymour,Graph minors V, excluding a planar graph, J. Combinatorial Theory, Ser. B, 41(1986), 92–114.
D. J. Rose,On simple characterization of k-trees, Discrete Mathematics 7(1970), 317–322.
J. J. Rotman,The Theory of Groups (2nd ed.), Allyn and Bacon (1973).
P. Scheffler,Linear time algorithms for NP-complete problems restricted to partial k-trees, Akad. Wiss. DDR Report R-MATH-03/87 (1987).
Y. Shiloah,A fast equivalence-checking algorithm for circular lists, Information Processing Letters 8(1979), 236–238.
M. M. Syslo,Linear time algorithm for coding outerplanar graphs, in Beiträge zum Graphentheorie, Proceedings of Oberhof Conference 1977, H. Sachs (Ed.) (1978), 259–269.
A. Wald and C. J. Colbourn,Steiner trees, partial 2-trees, and minimum IFI networks, Networks 13(1983), 159–167.
T. V. Wimer,Linear algorithms on k-terminal graphs, PhD. Thesis, Clemson University (1988).
Author information
Authors and Affiliations
Additional information
Supported in part by a grant from the Swedish Natural Science Research Council.
Research supported in part by the Office of Naval Research Contract N00014-86-K-0419.
Rights and permissions
About this article
Cite this article
Arnborg, S., Proskurowski, A. Canonical representations of partial 2- and 3-trees. BIT 32, 197–214 (1992). https://doi.org/10.1007/BF01994877
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01994877