Skip to main content
Log in

Abstract

A set is amorphous, if it is not a union of two disjoint infinite subsets. The following variants of the Tychonoff product theorem are investigated in the hierarchy of weak choice principles. TA1: An amorphous power of a compactT 2 space is compact. TA2: An amorphous power of a compactT 2 space which as a set is wellorderable is compact. In ZF0TA1 is equivalent to the assertion, that amorphous sets are finite. RT is Ramsey's theorem, that every finite colouring of the set ofn-element subsets of an infinite set has an infinite homogeneous subset and PW is Rubin's axiom, that the power set of an ordinal is wellorderable. In ZF0RT+PW implies TA2. Since RT+PW is compatible with the existence of infinite amorphous sets, TA2 does not imply TA1 in ZF0. But TA2 cannot be proved in ZF0 alone. As an application, we prove a theorem of Stone, using a weak wellordering axiomD 3 (a set is wellorderable, if each of its infinite subsets is structured) together with RT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Abian, A.: Rado's theorem and equations. Notre Dame Journal Formal Logic14, 145–150 (1973).

    Google Scholar 

  2. Alas, O.T.: The axiom of choice and two particular forms of Tychonoff's theorem. Portugaliae Math.281, 75–76 (1969).

    Google Scholar 

  3. Arrow, K.J.: Social choice and individual values. New York: Wiley 1963.

    Google Scholar 

  4. Bell, J.L., Fremlin, D.H.: A geometric form of the axiom of choice. Fundamenta Math.77, 167–170 (1972).

    Google Scholar 

  5. Benthem, J.F.A.K. van: A set-theoretical equivalent of the prime ideal theorem for Boolean algebras. Fundamenta Math.89, 151–153 (1975).

    Google Scholar 

  6. Bernstein, A.R.: A new kind of compactness for topological spaces. Fundamenta Math.66, 185–193 (1970).

    Google Scholar 

  7. Blair, R.L., Tomber, M.L.: The axiom of choice for finite sets. Proc. Am. Math. Soc.11, 22–226 (1960).

    Google Scholar 

  8. Blass, A.: Ramsey's theorem in the hierarchy of choice principles. J. Symb. Logic42, 387–390 (1977).

    Google Scholar 

  9. Blass, A.: A model without ultrafilters. Bull. Acad. Polon. Sci. Math.25, 329–331 (1977).

    Google Scholar 

  10. de Bruijn, N.G., Erdös, P.: A colour problem for infinite graphs and a problem in the theory of relations.

  11. Brunner, N.: Dedekind-Endlichkeit und Wohlordenbarkeit. Monatsh. Math.94, 9–31 (1982).

    Google Scholar 

  12. Brunner, N.: Sequential compactness and the axiom of choice. Notre Dame Journal Formal Logic24, 89–92 (1983).

    Google Scholar 

  13. Brunner, N.: Lindelöf Räume und Auswahlaxiom. Anz. Akad. Wiss. Wien192, 161–165 (1982)

    Google Scholar 

  14. Brunner, N.: Kategoriesätze und multiples Auswahlaxiom. Z. math. Logik Grundlagen Math.29 435–443 (1983)

    Google Scholar 

  15. Brunner, N.: Hilberträume mit amorphen Basen. Compositio Math. (to appear).

  16. Brunner, N.: The axiom of Choice in topology. Notre Dame Journal Formal Logic24, 305–317 (1983)

    Google Scholar 

  17. Brunner, N.: Geordnete Läuchli Kontinuen. Fundamenta Math.116, 67–73 (1983).

    Google Scholar 

  18. Stone, A.H.: Paracompactness and product space. Bull. A.M.S.54, 977–982 (1948).

    Google Scholar 

  19. Colmez, J.: Sur les espaces precompacts, C.R. Acad. Paris234, 1019–1021 (1952).

    Google Scholar 

  20. Comfort, W.W.: Tychonoff's theorem without the axiom of choice. Fundamenta Math.63, 57–100 (1968).

    Google Scholar 

  21. Cowen, R.H.: Partition principles for properties of finite character. Rep. Math. Logic14, 23–28 (1982).

    Google Scholar 

  22. Day, M.M.: Amenability and equicontinuity. Studia Math.31, 481–494 (1968).

    Google Scholar 

  23. Doets, H.C.: Existence of compactifications. Bull. Acad. Polon. Sci. Math.19, 1–3 (1971).

    Google Scholar 

  24. Doitchinov, O.: Un théorème sur les espaces minimaux. Bull. Sci. Math.93, 33–36 (1969).

    Google Scholar 

  25. Douwen, E.K. van: Covering and separation properties of box products. In: Reed, G.M. (ed.): Surveys in general topology, pp. 55–129. New York: Academic Press 1980.

    Google Scholar 

  26. Engeler, E.: Konstruktion von Modellerweiterungen. Z. math. Logik Grundlagen Math.5, 126–131 (1959).

    Google Scholar 

  27. Engelking, R.: General topology. Warschau: PWN 1977.

    Google Scholar 

  28. Feferman, S.: Applications of forcing and generic sets. Fundamenta Math.56, 325–345 (1965).

    Google Scholar 

  29. Felgner, U.: Über das Ordnungstheorem. Z. math. Logik Grundlagen Math.17, 257–272 (1971).

    Google Scholar 

  30. Felgner, U.: Models of ZF set theory. Berlin, Heidelberg, New York: Springer 1971.

    Google Scholar 

  31. Felgner, U.: Independence of the Boolean prime ideal theorem from the order extension principle. Habilitationsschrift Heidelberg 1973.

  32. Felscher, W.: Zu einem Lemma von Engeler und Robinson. Z. math. Logik Grundlagen Math.10, 15–16 (1964).

    Google Scholar 

  33. Gauntt, R.J.: Restricted versions of the axiom of choice. Notices Am. Math. Soc.68T-167, 351 (1968).

    Google Scholar 

  34. Ginsburg, J., Saks, V.: Applications of ultrafilters in topology. Pac. J. Math.57, 403–418 (1975).

    Google Scholar 

  35. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey theory. New York: Wiley 1980.

    Google Scholar 

  36. Halpern, J.D.: Independence of the axiom of choice from the Boolean prime ideal theorem. Fundamenta Math.55, 57–66 (1964).

    Google Scholar 

  37. Halpern, J.D.: A question of Tarski and a maximal theorem of Kurepa. Pac. J. Math.41, 111–121 (1972).

    Google Scholar 

  38. Halpern, J.D., Läuchli, H.: A partition theorem. Trans. Am. Math. Soc.124, 360–367 (1966).

    Google Scholar 

  39. Halpern, J.D., Levy, A.: The Boolean prime ideal theorem does not imply the axiom of choice. In: Scott, D.S. (ed.): Axiomatic set theory, pp. 83–134. Los Angeles: P.S.P.M. 1967.

    Google Scholar 

  40. Henkin, L.: Metamathematical theorems equivalent to the prime ideal theorem for Boolean algebras. Bull. Am. Math. Soc.60, 388 (1954).

    Google Scholar 

  41. Hickin, K.K., Plotkin, J.M.: A patching lemma. Notre Dame Journal Formal Logic17, 158–160 (1976).

    Google Scholar 

  42. Hickman, J.L.: Groups in models of set theory that fail the axiom of choice. Bull. Austral. Math. Soc.14, 199–232 (1976).

    Google Scholar 

  43. Hickman, J.L.: Quasi-minimal posets and lattices. J. reine angew. Math. (Crelle)296, 10–13 (1977).

    Google Scholar 

  44. Hodges, W.: Effectivity of field constructions. Proc. Math. Soc. London32, 133–162 (1976).

    Google Scholar 

  45. Howard, P.E.: Limitations on the Fraenkel Mostowski method of independence proofs. J. Symb. Logic38, 416–422 (1973).

    Google Scholar 

  46. Howard, P.E.: Łoś' theorem and the Boolean prime ideal theorem imply the axiom of choice. Proc. Am. Math. Soc.49, 426–428 (1975).

    Google Scholar 

  47. Howard, P.E., Rubin, J.E.: The axiom of choice and linearly ordered sets. Fundamenta Math.97, 111–121 (1977).

    Google Scholar 

  48. Jech, T.J.: The axiom of choice. New York: North-Holland 1973.

    Google Scholar 

  49. Kakutani, S.: A generalication of Brouwer's fixed point theorem. Duke Math. J.8, 457–459 (1941).

    Google Scholar 

  50. Kakutani, S.: Concrete representations of abstract (M)-spaces. Ann. Math.42, 994–1024 (1941).

    Google Scholar 

  51. Kannan, V., Soundararajan, T.: Properties that are productive, closed-hereditary, and surjective. Topology and Applications12, 141–146 (1981).

    Google Scholar 

  52. Kelley, J.L.: The Tychonoff theorem implies the axiom of choice. Fundamenta Math.37, 75–76 (1950).

    Google Scholar 

  53. Kirman, A.P., Sonderman, D.: Arrow's theorem, many agents, and invisible dictators. J. Econ. Theory5, 267–277 (1972).

    Google Scholar 

  54. Kleinberg, E.M.: The independence of Ramsey's theorem. J. Symb. Logic34, 205–206 (1969).

    Google Scholar 

  55. Krom, M.: Equivalents of a weak axiom of choice. Notre Dame Journal Formal Logic22, 283–285 (1981).

    Google Scholar 

  56. Läuchli, H.: Auswahlaxiom in der Algebra. Commentarii Math. Helvetii37, 1–18 (1963).

    Google Scholar 

  57. Läuchli, H.: Independence of the ordering theorem from a restricted axiom of choice. Fundamenta Math.54, 31–43 (1964).

    Google Scholar 

  58. Läuchli, H.: Colouring infinite graphs and the Boolean prime ideal theorem. Israel J. Math.9, 422–429 (1971).

    Google Scholar 

  59. Levy, A.: Independence of various definitions of finiteness. Fundamenta Math.46, 1–13 (1958).

    Google Scholar 

  60. Levy, A.: Axioms of multiple choice. Fundamenta Math.50, 475–483 (1962).

    Google Scholar 

  61. Levy, A.: On a paper by Myćielski. Acta Math. Acad. Sci. Hungaricae14, 125–130 (1963).

    Google Scholar 

  62. Lin, A.: The least permutation model. Bull. Acad. Polon. Sci. Math.27, 639–643 (1979).

    Google Scholar 

  63. Łoś, J., Ryll-Nardzewski, C.: Application of Tychonoff's theorem in mathematical proofs. Fundamenta Math.38, 233–237 (1951).

    Google Scholar 

  64. Łoś, J., Ryll-Nardzewski, C.: Effectiveness of the representation theory for Boolean algebras. Fundamenta Math.41, 49–56 (1955).

    Google Scholar 

  65. Luxemburg, W.A.J.: Reduced powers of real number systems and equivalents of the Hahn Banach theorem, pp. 123–137. Intern. Symp. Applications of Model Theory, Holt-Toronto 1969.

  66. Marcewski, E.: Sur l'extension de l'ordre partiel. Fundamenta Math.16, 386–389 (1930).

    Google Scholar 

  67. Mathias, A.R.D.: The order-extension principle. Los Angeles: U.C.L.A. 1967.

    Google Scholar 

  68. Michael, E.A.: Paracompactness and the Lindelöf property in finite and countable cartesian products. Compositio Math.23, 199–214 (1971).

    Google Scholar 

  69. Mrowka, S.: Ideal's extension theorem and its equivalence to the axiom of choice. Fundamenta Math.43, 46–49 (1955).

    Google Scholar 

  70. Murdeshwar, M.G.: Alexander's subbasis theorem. Niew Archief Wiskunde27, 116–117 (1979).

    Google Scholar 

  71. Mycielski, J.: Colouring of infinite graphs and the theorem of Kuratowski. Acta Math. Acad. Sci. Hungaricae12, 125–129 (1961).

    Google Scholar 

  72. Mycielski, J.: Two remarks on Tychonoff's product theorem. Bull. Acad. Polon. Sci. Math.8, 439–441 (1964).

    Google Scholar 

  73. Nagami, K.: Countable paracompactness of inverse limits and products. Fundamenta Math.73, 261–270 (1972).

    Google Scholar 

  74. Noble, N.: Products with closed projections. II. Trans. Am. Math. Soc.160, 169–183 (1971).

    Google Scholar 

  75. Pallaschke, D.: Markets with countably infinitely many traders. Methods Operation Research22, 128–135 (1976).

    Google Scholar 

  76. Pincus, D.: Independence of the prime ideal theorem from the Hahn-Banach theorem. Bull. Am. Math. Soc.78, 766–770 (1972).

    Google Scholar 

  77. Pincus, D.: Two model theoretic ideas in independence proofs. Fundamenta Math.92, 113–130 (1976).

    Google Scholar 

  78. Pincus, D.: Adding dependent choice to the prime ideal theorem. In: Gandy, R., Hyland, M. (ed.): Logic Colloquium 76. Oxford: North-Holland 1977.

    Google Scholar 

  79. Pincus, D., Solovay, R.M.: Definability of measures and ultrafilters. J. Symb. Logic42, 179–190 (1977).

    Google Scholar 

  80. Rado, R.: Some partition theorems. In: Combinatorial Theory, pp. 111–121. Coll. Math. J. Bolyai-Budapest 1969.

  81. Ramsey, F.P.: On a problem of formal logic. Proc. Math. Soc. London30, 264–286 (1930).

    Google Scholar 

  82. Rav, Y.: The ultrafilter principle implies that the projective limit of compact Hausdorff spaces is non-empty. Bull. Acad. Polon Sci. Math.24, 559–562 (1976).

    Google Scholar 

  83. Rav, Y.: Variants of Rado's selection lemma and their applications. Math. Nachrichten79, 145–165 (1977).

    Google Scholar 

  84. Rimscha, M. von: Weak foundation and axioms of universality. Arch. math. Logik21, 195–205 (1981).

    Google Scholar 

  85. Rubin, H.: Two propositions equivalent to the axiom of choice under both the axioms of extensionality and regularity. Notices Am. Math. Soc.7, 380 (1960).

    Google Scholar 

  86. Rubin, H., Rubin, J.E.: Equivalents of the axiom of choice. New York: North-Holland 1963 (new edition to appear).

    Google Scholar 

  87. Rubin, H., Scott, D.S.: Some topological theorems equivalent to the Boolean prime ideal theorem. Bull. Am. Math. Soc.60, 389 (1954).

    Google Scholar 

  88. Salbany, S.: On compact* spaces and compactifications. Proc. Am. Math. Soc.45, 274–280 (1974).

    Google Scholar 

  89. Skala, H.J.: Foundations of the social ordering problem. In: Moeschlin, O., Pallaschke, D. (eds.): Game theory and mathematical economics, pp. 249–261. Amsterdam: North-Holland 1981.

    Google Scholar 

  90. Stone, M.H.: The theory of representations Boolean algebras. Trans. Am. Math. Soc.40, 37–111 (1963).

    Google Scholar 

  91. Tarski, A.: Prime ideal theorems. Bull. Am. Math. Soc.60, 390–391 (1954).

    Google Scholar 

  92. Truss, J.: Finite axioms of Choice. Ann. Math. Logic6, 147–176 (1973).

    Google Scholar 

  93. Truss, J.: Classes of Dedekind finite cardinals. Fundamenta Math.84, 187–208 (1974).

    Google Scholar 

  94. Ward, L.E., Jr.: A weak Tychonoff theorem and the axiom of Choice. Proc. Am. Math. Soc.13, 757–758 (1962).

    Google Scholar 

  95. Zuckerman, M.M.: Number theoretic results related to the axiom of choice for finite sets. Ill. J. Math.13, 521–527 (1969).

    Google Scholar 

  96. Howard, P.E.: Rado's lemma does not implyBPI. Z. Math. Logik (to appear).

  97. Loeb, P.A.: A new proof of the Tychonoff theorem. Am. Math. Monthly72, 711–717 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Diese Arbeit ist Teil der Habilitationsschrift des Verfassers im Fachgebiet „Mathematische Analysis“ an der Technischen Universität Wien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, N. Amorphe Potenzen kompakter Räume. Arch math Logik 24, 119–135 (1984). https://doi.org/10.1007/BF02007144

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02007144

AMS (MOS) 1980

Navigation