Skip to main content
Log in

A divide-and-conquer algorithm for constructing relative neighborhood graph

  • Part I Computer Science
  • Published:
BIT Aims and scope Submit manuscript

Abstract

AnO(n logn) divide-and-conquer algorithm for finding the relative neighborhood graph RNG(V) of a set V ofn points in Euclidean space is presented. If implemented in parallel, its time complexity isO(n) and it requiresO(logn) processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Bentley and J. H. Friedman,A tree machine for searching problems, Proceedings, IEEE 1979, International Conference on Parallel Computing (1979), pp. 257–266.

  2. M. Blum, R. W. Flody, V. R. Pratt, R. L. Rivest, and R. E. Tarjan,Time bond for selection, Journal of Computer and System Sciences, Vol. 7, No. 4, (1972), pp. 724–742.

    Google Scholar 

  3. R. C. Chang and R. C. T. Lee,An O(N logN)Minimal spanning tree algorithm for N points in the plane, BIT 26 (1986), pp. 7–16.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. A. Dwyer,A faster divide-and-conquer algorithm for constructing Delaunay triangulations, Algorithmica, Vol. 2, (1987), pp. 137–151.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. J. Guibas and J. Stolfi,Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams, ACM Transactions on Graphics 4 (1985), pp. 74–123.

    Article  MATH  Google Scholar 

  6. J. W. Jaromczyk and M. Kowaluk,Linear time algorithm to construct the relative neighborhood graph from the Delaunay triangulation in R 2 with the metric L p , Technical report No. 129–88, Department of Computer Science, University of Kentucky, Lexington, KY 40506-0027.

  7. J. Katajainen,The region approach for computing relative neighbourhood graphs in the L p metric, Computing 40 (1988), pp. 147–161.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Katajainen and O. Nevalainen,Computing relative neighborhood graphs in the plane, Pattern Recognition, Vol. 19, No. 3, (1986), pp. 221–228.

    Article  MATH  Google Scholar 

  9. D. T. Lee,Two-dimensional Voronoi diagrams in the L p metric, Journal of the ACM 27 (1980), pp. 604–618.

    Article  MATH  Google Scholar 

  10. D. T. Lee and B. J. Schachter,Two algorithms for constructing Delaunay triangulations, International Journal of Computer and Information Sciences, Vol. 9, No. 3, (1980), pp. 219–242.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. J. Supowit,The relative neighborhood graph, with an application to minimum spanning trees, Journal of the Association for Computing Machinery, Vol. 30, No. 3, (1983), pp. 428–448.

    MATH  MathSciNet  Google Scholar 

  12. C. Y. Tang and R. C. T. Lee,Optimal speeding up of parallel algorithms based upon divide-and-conquer strategy, Information Sciences, Vol. 32, No. 3, (1984), pp. 173–186.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. T. Toussaint,The relative neighborhood graph of a finite planar set, Pattern Recognition, Vol. 12, (1980), pp. 261–268.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, NF. A divide-and-conquer algorithm for constructing relative neighborhood graph. BIT 30, 196–206 (1990). https://doi.org/10.1007/BF02017341

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02017341

CR categories

Key words

Navigation