Abstract
We present a universally applicable algorithm for generating minimal perfect hashing functions. The method has (worst case) polynomial time complexity in units of bit operations. An adjunct algorithm for reducing parameter magnitudes in the generated hash functions is given. This probabilistic method makes hash function parameter magnitudes independent of argument (input key) magnitudes.
Similar content being viewed by others
References
Aho, A. V., Hopcroft, J. E. and Ullman, J. D.,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass. 1974.
Borodin, A. and Moenck, R.,Fast modular transforms, Journal of Computer and System Sciences 8, 3 (1974) 366–386.
Chang, C. C.,The study of an ordered minimal perfect hashing scheme, Commun. ACM 27, 4 (1984) 384–387.
Cichelli, R. J.,Minimal perfect hash functions made simple, Commun. ACM 23, 1 (1980), 17–19.
Fredman, M., Konlos, J. and Szemeredi, E.,Storing a sparse table with O(1)worst case access time, JACM 31, 3 (1984) 538–544.
Hogg, R. and Craig, A.,Introduction To Mathematical Statistics, Macmillan, New York, New York 1970.
Jaeschke, G.,Reciprocal hashing — a method for generating minimal perfect hashing functions, Commun. ACM 24, 12 (1981), 829–833.
LeVeque, W. J.,Topics in Number Theory, Addison-Wesley, Reading, Mass. 1956.
Sager, T. J.,A polynomial time generator for minimal perfect hash functions, Commun. ACM 28, 5 (1985) 523–532.
Sprugnoli, R.,Perfect hashing functions: a single probe retrieval method for static sets, Commun. ACM 20, 11 (1977) 841–850.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Winters, V.G. Minimal perfect hashing in polynomial time. BIT 30, 235–244 (1990). https://doi.org/10.1007/BF02017345
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02017345