Skip to main content
Log in

Minimal perfect hashing in polynomial time

  • Part I Computer Science
  • Published:
BIT Aims and scope Submit manuscript

Abstract

We present a universally applicable algorithm for generating minimal perfect hashing functions. The method has (worst case) polynomial time complexity in units of bit operations. An adjunct algorithm for reducing parameter magnitudes in the generated hash functions is given. This probabilistic method makes hash function parameter magnitudes independent of argument (input key) magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A. V., Hopcroft, J. E. and Ullman, J. D.,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass. 1974.

    MATH  Google Scholar 

  2. Borodin, A. and Moenck, R.,Fast modular transforms, Journal of Computer and System Sciences 8, 3 (1974) 366–386.

    MATH  MathSciNet  Google Scholar 

  3. Chang, C. C.,The study of an ordered minimal perfect hashing scheme, Commun. ACM 27, 4 (1984) 384–387.

    Article  Google Scholar 

  4. Cichelli, R. J.,Minimal perfect hash functions made simple, Commun. ACM 23, 1 (1980), 17–19.

    Article  Google Scholar 

  5. Fredman, M., Konlos, J. and Szemeredi, E.,Storing a sparse table with O(1)worst case access time, JACM 31, 3 (1984) 538–544.

    Article  MATH  Google Scholar 

  6. Hogg, R. and Craig, A.,Introduction To Mathematical Statistics, Macmillan, New York, New York 1970.

    Google Scholar 

  7. Jaeschke, G.,Reciprocal hashing — a method for generating minimal perfect hashing functions, Commun. ACM 24, 12 (1981), 829–833.

    Article  MATH  MathSciNet  Google Scholar 

  8. LeVeque, W. J.,Topics in Number Theory, Addison-Wesley, Reading, Mass. 1956.

    Google Scholar 

  9. Sager, T. J.,A polynomial time generator for minimal perfect hash functions, Commun. ACM 28, 5 (1985) 523–532.

    Article  MathSciNet  Google Scholar 

  10. Sprugnoli, R.,Perfect hashing functions: a single probe retrieval method for static sets, Commun. ACM 20, 11 (1977) 841–850.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winters, V.G. Minimal perfect hashing in polynomial time. BIT 30, 235–244 (1990). https://doi.org/10.1007/BF02017345

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02017345

CR categories

Keywords

Navigation